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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN TIME

OF SMALL SOLUTIONS TO THE ELLIPTIC-HYPERBOLIC

DAVEY-STEWARTSON SYSTEM

Nakao Hayashi and Hitoshi Hirata

We study the initial value problem for the Davey-Stewartson systems

8><
>:

i@tu+ c0@
2
x1u+ @2x2u = c1juj

2u+ c2u@x1'; (x; t) 2 R3;

@2x1'+ c3@
2
x2' = @x1 juj

2;

u(x; 0) = �(x);

(1)

where c0; c3 2 R, c1; c2 2 C, u is a complex valued function and ' is a real
valued function. The initial data � is C-valued function on Rn, and usually it
belongs to some kind of Sobolev type spaces. The systems (1) for c3 > 0 were
derived by Davey and Stewartson [4] and model the evolution equation of two-
dimensional long waves over �nite depth liquid. -Dor -devic-Redekopp [5] showed
that the parameter c3 can become negative when capillary e�ects are signi�cant.
When (c0; c1; c2; c3) = (1;�1; 2;�1), (�1;�2; 1; 1) or (�1; 2;�1; 1) the system (1) is
referred as the DSI, DSII defocusing and DSII focusing respectively in the inverse
scattering literature. In [7], Ghidaglia and Saut classi�ed (1) as elliptic-elliptic,
elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic according to the
respective sign of (c0; c3) : (+;+); (+;�); (�;+) and (�;�). For the elliptic-elliptic
and hyperbolic-elliptic cases, local and global properties of solutions were studied
in [7] in the usual Sobolev spaces L2; H1 and H2. In this paper we consider the
elliptic-hyperbolic case. In this case after a rotation in the x1x2-plane and rescaling,
the system (1) can be written as

�
i@tu+�u = d1juj

2u+ d2u@x1'+ d3u@x2';

@x1@x2' = d4@x1 juj
2 + d5@x2 juj

2;
(2)
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where � = @2x1 + @2x2 , d1; � � � ; d5 are arbitrary constants. In order to solve the
system of equations, one has to assume that '(�) satis�es the radiation condition,
namely, we assume that for given functions '1 and '2

lim
x2!1

'(x1; x2; t) = '1(x1; t) and lim
x1!1

'(x1; x2; t) = '2(x2; t): (3)

Under the radiation condition (3), the system (2) can be written as

i@tu+�u = d1juj
2u+ d2u

Z 1

x2

@x1 juj
2(x1; x2

0; t)dx2
0

+ d3u

Z 1

x1

@x2 juj
2(x1

0; x2; t)dx1
0 + d4u@x1'1 + d5u@x2'2 (4)

with the initial condition u(x; 0) = �(x). In what follows we consider the equa-
tion (4).

In this paper we use the following notations.

Notations. We de�ne the weighted Sobolev space as follows

Hm;l = ff 2 L2; k(1� @2x1 � @2x2)
m=2(1 + x1

2 + x2
2)l=2fk <1g;

Hm;l(Rxj ) = ff 2 L2(Rxj ); k(1� @2xj )
m=2(1 + xj

2)l=2fkL2(Rj) <1g;

where k � k denotes the usual L2 norm. We let @ = (@x1 ; @x2), J = (Jx1 ; Jx2), Jxj =
xj + 2it@xj . For simplicity we write Lpxj = Lp(Rxj ), L

p
x1L

q
x2 = Lp(Rx1 ;L

q(Rx2)),

Hm;l
xj = Hm;l(Rxj ), k � kXm;l(t) =

P
j�j�m k@� � k +

P
j�j�l kJ

� � k, where � =

(�1; �2); j�j = �1 + �2, �1; �2 2 N [ f0g.

Local existence of small solutions to (4) was shown when the initial function
is in Hm;l in [12] for H12;0 \ H0;6, [8] for Hm;0 \ H0;l; (m; l > 1), [1] for Hm;0,
(m is su�ciently large integer) and [9] for Hm;0; (m � 5=2). Furthermore in [10]
without smallness condition on the data local existence of solutions was proved
in the analytic function space which consists of real analytic functions. Global
existence of small solutions to (4) was also given in [10] when the data are real
analytic and satisfy the exponential decay condition.

Recently, H.Chihara [1] established the global existence of small solutions to
(4) in higher order Sobolev spaces. Our purpose in this paper is to prove the global
existence of small solutions to (4) in the usual weighted Sobolev spaces H3;0\H0;3,
which is considered as lower order Sobolev class compared to one used in [1], by
the calculus of commutator of operators. We shall prove the following.

Theorem 1. Let � 2 H3;0 \H0;3, @j+1x1 '1 2 C(R;L1x1), @
j+1
x2 '2 2 C(R;L1x2),

(0 � j � 3), �3 and �3 be su�ciently small, where

�m = sup
t2R

X
0�j�m

(1 + t)1+a
�
k(t@x1)

j@x1'1(t)kL1x1 + k@j+1x1 '1(t)kL1x1

+ k(t@x2)
j@x2'2(t)kL1x2 + k@j+1x2 '2(t)kL1x2

�
; a > 0;

�m �

� X
j�j+j�j�m

k@�1x1 @
�2
x2 x1

�1x2
�2�k2

�1=2

:
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Then there exists a unique global solution u of (1.4) such that

u 2 L1local(R;H3;0 \H0;3) \ C(R;H2;0 \H0;2); (5)

sup
t2R

� X
j�j+j�j�2

k@�J�u(t)k+
X

j�j+j�j�3

(1 + t)�C�3k@�J�u(t)k

�
� 4�3: (6)

Corollary 2. Let u be the solution constructed in Theorem 1. Then we have

ku(t)kL1 � C(1 + jtj)�1(k�kH3;0 + k�kH0;3):

Moreover, for any � 2 H3;0 \H0;3 there exist u� such that

ku(t)� U(t)u�kH2;0 ! 0 as t! �1;

where U(t) = eit(@
2

x1
+@2x2 ).

The rate of decay obtained in Corollary 2 is the same as that of solutions to
linear Schr�odinger equations. Time decay of solutions for the Davey-Stewartson
systems (1) was obtained in [3], [7] when (c0; c3) = (+;+) and (c0; c3) = (�;+)
and in [10] when (c0; c3) = (+;�) and (c0; c3) = (�;�) under exponential decay
conditions on the data.

The strategy of the proof of Theorem 1. For simplicity we consider the
following equation

i@tu+�u = u

Z 1

x2

@x1 juj
2dx2

0;

which have only main nonlinear term. We use following operators Kx1 and Kx2 ,
where

Kx1 = Kx1(v) =

1X
m=0

Am

m!

�Z x1

�1

kv(t; x1
0)k2L2

x2

dx1
0 Dx1

hDx1i

�m

and

Kx2 = Kx2(v) =

1X
m=0

Am

m!

�Z x2

�1

kv(t; x2
0)k2L2

x1

dx2
0 Dx2

hDx2i

�m

;

where hDxj i = (1 +D2
xj )

1=2.

We use Coifman and Meyer's result ([2], p.154):

Theorem A. Let � 2 C1(Rm �Rm n (0; 0)) satisfy

j@�� @
�
� �(�; �)j � C�;�(j�j+ j�j)�j�j�j�j

for (�; �) 6= (0; 0) and any �; � 2 (N)m. If �(D) denotes the bilinear operator

�(D)(a; h)(x) =

Z Z
ei(x;�+�)�(�; �)â(�)ĥ(�)d�d�;

then k�(D)(a; h)kL2(Rm) � CkakL1(Rm)khkL2(Rm):
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By virtue of this theorem, we obtain the following commutator estimate.

Lemma 3.

k[hDx1i
1=2; f ]gkL2

x1
+ k[hDx1i; f ]gkL2

x1
� CkhDx1ifkL1x1kgkL

2
x1
:

So, taking A2 = 1=�3 (for the de�nition of �3, see Theorem 1) and using this
lemma, we have

1

2

d

dt

X
j�j+j�j�3

(kKx1@
�J�u(t)k2 + kKx2@

�J�u(t)k2)

+
1

4�
1=2
3

X
j�j+j�j�3

�

ku(t)kL2
x2
khDx1i

1=2
Kx1@

�J�u(t)kL2
x2



2
L2
x1

+


ku(t)kL2

x1
khDx2i

1=2
Kx2@

�J�u(t)kL2
x1



2
L2
x2

�
� C(1 +A)2(1 + t)�1ku(t)k2X2;2(t)(1 + ku(t)k2X2;2(t))ku(t)k

2
X3;3(t)

+
X

j�j+j�j�3

�����Im(Kx1@
�J�u

Z 1

x2

@x1 juj
2dx2

0;Kx1@
�J�u)

����

+

����Im(Kx2@
�J�u

Z 1

x2

@x1 juj
2dx2

0;Kx2@
�J�u)

����
�
: (7)

The second term of the left hand side of (7) means smoothing properties of solutions
to the equation. So we have to estimate the term

X
j�j+j�j�3

�����Im(Kx1@
�J�u

Z 1

x2

@x1 juj
2dx2

0;Kx1@
�J�u)

����

+

����Im(Kx2@
�J�u

Z 1

x2

@x1 juj
2dx2

0;Kx2@
�J�u)

����
�
:

For this purpose, we pay attention to the special structure of the nonlinear term

u

Z 1

x2

@x1 juj
2dx2

0 = u
1

2it

Z 1

x2

�uJx1u� uJx1udx2
0: (8)

This deformation shows this nonlinear term has own time decay in some sence.
Using this structure, we can estimate as following,

1

2

d

dt

X
j�j+j�j�3

(kKx1@
�J�u(t)k2 + kKx2@

�J�u(t)k2)

+

�
1

4�
1=2
3

� CeC�3
� X
j�j+j�j�3

�

ku(t)kL2
x2
khDx1i

1=2Kx1@
�J�u(t)kL2

x2



2
L2
x1

+


ku(t)kL2

x1
khDx2i

1=2
Kx2@

�J�u(t)kL2
x1



2
L2
x2

�
� C(1 + t)�1�3ku(t)k

2
X3;3(t)

(9)
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provided that �3 is su�ciently small and

sup
�T�t�T

ku(t)k2X2;2(t) � 4�23; (10)

sup
�T�t�T

(1 + jtj)�C�3ku(t)k2X3;3(t) � 4�23 (11)

for some time T > 0. We choose �3 satisfying

1

4�
1=2
3

� CeC�3 � 0:

Then we have

ku(t)k2X3;3(t) � eC�3�23 + C�3

Z t

0

(1 + s)�1ku(s)k2X3;3(t)ds: (12)

Thus (9) shows that the nonliear term is controlled by the second term of the left
hand side of (7) and the right hand side of (9). Global existence theorem is obtained
by showing that (10) and (11) hold for any T . In order to prove (10) and (11) for
any T > 0 we need (12) and the following inequality

ku(t)k2X2;2(t) � eC�3�23 + C�3

Z t

0

(1 + s)�1�2C�3ku(s)k2X3;3(t)ds: (13)

The inequality (13) is obtained by the structure of nonlinear term (8) again.

Theorem 1 is obtained by applying the Gronwall inequality to (12) and (13). It
seems to be di�cult to get the inequality (12) through the methods used in [8], [9]
because nonlinear terms are not taken into account to derive smoothing properties
of solutions in [8], [9]. On the other hand the operators Kx1 and Kx2 are made
based on the nonlocal nonlinear terms (the second and the third terms on the right
hand side of (4)). The similar operators as those of Kx1 and Kx2 have been used
in [1] to obtain Theorem 0.1 and the local existence theorem of small solutions to
(4) in the usual order Sobolev space.

Remark 1. We cannot apply above method to hyperbolic-hyperbolic Davey-
Stewartson system. In fact, if we estimate similarly as above, we have

1

2

d

dt

X
j�j+j�j�3

(kKx1@
�J�u(t)k2 + kKx2@

�J�u(t)k2)

+
1

4�
1=2
3

X
j�j+j�j�3

(


ku(t)kL2

x2
khDx1i

1=2 ~Kx1@
�J�u(t)kL2

x2



2
L2
x1

+


ku(t)kL2

x1
khDx2i

1=2 ~Kx2@
�J�u(t)kL2

x1



2
L2
x2

)

� C(1 +A)2(1 + t)�1ku(t)k2X2;2(t)(1 + ku(t)k2X2;2(t))ku(t)k
2
X3;3(t)

+ CeC�3
X

j�j+j�j�3



ku(t)kL2
x2
khDx1i

1=2 ~Kx1@
�J�u(t)kL2

x2



2
L2
x1

(14)
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under the condition (10) and (11), where

~Kx1 =

1X
m=0

Am

m!

�Z x2

�1

kv(t; x2
0)k2L2

x1

dx2
0 Dx1

hDx1i

�m

= e
A
R x2
�1 kv(t;x2

0)k2
L2x1

dx2
0 Dx1
hDx1 i

and

~Kx2 =

1X
m=0

Am

m!

�Z x1

�1

kv(t; x01)k
2
L2
x2

dx1
0 Dx2

hDx2i

�m

= e
A
R x1
�1 kv(t;x0

1
)k2
L2x2

dx1
0 Dx2
hDx2 i ;

but we can easy to see that the last term of the right-hand side of (14) cannot be
controlled by the second term of the left-hand side of (14).

Remark 2. For Davey-Stewartson systems, we can de�ne formally the energy
similar as the usual nonlinear Schr�odinger equation if c1; c2 2 R. But unfortunately,
this energy is not conserved in elliptic-hyperbolic and hyperbolic-hyperbolic cases.
So, we cannot use usual H1 a-priori estimate by energy. This is one reason that
the global existence theorem of this system is di�cult.
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