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BEST POSSIBLE BOUNDS AND MONOTONICITY
OF SEGMENTS OF HARMONIC SERIES (II)

Slavko Simi�c

Abstract. We give an answer to a hypothesis formulated in one of our earlier papers,
concerning boundaries and estimates of some segments of harmonic series.

In our previous article [4] we established some monotonicity criteria for the
sequences s(an; bn) of the type

s(an; bn) :=
1

an
+

1

an + 1
+

1

an + 2
+ � � �+

1

bn
;

where (an) and (bn) are increasing sequences of positive integers and an < bn,
n 2 N.

Let An := (an � 1=2)2 + 1=12, Bn := (bn + 1=2)2 + 1=12, n 2 N. Our results
from [4] are contained in the following propositions:

Proposition A. If the sequence (An=Bn) is nonincreasing for n 2 [n1; n2],
then s(an; bn) is strictly decreasing for n 2 [n1; n2], n1; n2 2 N.

Proposition B. If the sequence (Bn�1=12An�1=12
), i.e. ( bn+1=2an�1=2

) is nondecreasing,

then s(an; bn) is strictly increasing for the same n 2 [n1; n2].

Proposition C. If

Bn+1

An+1
�

Bn

An
>

Bn+1 �Bn

45a2nAnAn+1
; n 2 [n1; n2);

then the sequence s(an; bn) is strictly increasing for n 2 [n1; n2].

There are numerous problems concerning boundaries and estimates of some
segments of harmonic series (i.e. s(an; bn)) for given integer sequences (an), (bn);
see for example [1], [2].
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Since the best possible bounds for s(an; bn) are represented by this sequence it-
self, we can de�ne (as in [2]) the best lower bound of s(an; bn) by s� = infn s(an; bn),
and the best possible upper bound by s� = supn s(an; bn); so these bounds do not
depend on n 2 N.

Obviously, the question of the best possible bounds is in close connection with
monotonicity of the sequence s(an; bn) and Propositions A{C, cited above, give an
e�cient tool for solving this problem for wide class of segments of harmonic series.

In [3] we considered the question of the best possible bounds for sequences
(an), (bn) being of the form of arithmetic progression, i.e.

sn(p; q; A;B) := s(np+A; nq +B) =
1

np+A
+

1

np+A+ 1
+ � � �+

1

nq +B
;

where p, q, A, B are �xed integers and q > p > 0, B > A � 1 > 0. There we
formulated a generalization of results from [2] and [3] in the following

Hypothesis 1. Let m := p(2B + 1) � q(2A � 1). Then the sequence
sn(p; q; A;B) is:

(a) strictly increasing if m 6 0; hence the best possible bounds are

s�(p; q; A;B) = inf
n
sn(p; q; A;B) = s1(p; q; A;B);

s�(p; q; A;B) = sup
n

sn(p; q; A;B) = lim
n

sn(p; q; A;B) = ln(q=p);

(b) strictly decreasing in the case that m > 0, so

s�(p; q; A;B) = ln(q=p); s�(p; q; A;B) = s1(p; q; A;B):

In the same article we proved the validity of the cited hypothesis for the cases
A = 1, B = 0, p; q 2 N, and A = 1, B = 1, p; q 2 N. We also showed that
sn(p; q; A;B) is monotonous for su�ciently large n under conditions on p, q, A, B,
m as de�ned.

But closer examination shows that part (b) of the hypothesis is not valid,
i.e. condition m > 0 is necessary but not su�cient for sn(p; q; A;B) to be strictly
decreasing for each n, n 2 N. This can be illustrated by the following example.

Let p = A = 1, q = 2B; then m = p(2B + 1)� q(2A� 1) = 1 > 0, but

sn+1(1; 2B; 1; B)�sn(1; 2B; 1; B) =

B(2n+3)X
s=n+2

1

s
�

B(2n+1)X
s=n+1

1

s
=

B(2n+3)X
s=B(2n+1)+1

1

s
�

1

n+ 1

>

Z B(2n+3)+1

B(2n+1)+1

dt

t
�

1

n+ 1
= ln

�
1 +

1

n+ 1
2 +

1
2B

�
�

1

n+ 1
> 0;

for B large enough and �xed n, since the inequality ln

�
1 +

1

n+ 1
2

�
>

1

n+ 1
is

satis�ed for each n, n 2 N.
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In this paper we will give de�nite solution of cited Hypothesis using Propo-
sitions A{C, i.e. we will show that part (a) is correct and, under conditions of
part (b), we will determine n0 = n0(m; p; q; A) such that for n 6 n0 the sequence
sn(p; q; A;B) is strictly increasing and for n > n0 otherwise. From this, the best
possible bounds follow immediately.

An interesting consequence of this proposition is the establishment of the best
possible bounds for a generalized sequence sf(n)(p; q; A;B):

sf(n)(p; q; A;B) :=
1

pf(n) +A
+

1

pf(n) +A+ 1
+ � � �+

1

qf(n) +B
;

where f : N! N ia any increasing integer function.

An answer to cited Hypothesis 1 (which includes all cases considered in [3]) is
given in the next

Theorem D. Let A, B, p, q be �xed integers satisfying B > A � 1 > 0,
q > p > 1, and de�ne

m := p(2B + 1)� q(2A� 1); c :=
q

6mp
�

2A� 1

2p
; C1 :=

�
c�

1

3
; c+

1

3

�
;

C2 :=

�
c+

1

3
; c+

2

3

�
; r 2 C1 [ C2 is an integer and t := max(1; r):

Considering the sequence sn(p; q; A;B) de�ned as above, we have:

Proposition D1. If m 6 0, the sequence sn(p; q; A;B) is strictly increasing
for each n, n 2 N; hence the best possible bounds are:

s�(p; q; A;B) := inf
n
sn(p; q; A;B) = s1(p; q; A;B) =

q+BX
s=p+A

1

s
;

s�(p; q; A;B) := sup
n

sn(p; q; A;B) = lim
n

sn(p; q; A;B) = ln(q=p):

Proof. Checking validity of conditions of cited Proposition B (for an = pn+A;
bn = qn+B), we obtain that m 6 0 is equivalent to

nq +B + 1=2

np+A� 1=2
>

(n+ 1)q +B + 1=2

(n+ 1)p+ A� 1=2
;

i.e. ( bn+1=2an�1=2
) is nondecreasing. Therefore sn(p; q; A;B) is strictly increasing and

conclusions of Proposition D1 follow.

Proposition D2. In the case m > 0, the sequence sn(p; q; A;B) has the
maximal term with index n0 in the sense that it strictly increases for n 2 [1; n0]
and strictly decreases for n > n0. Index n0 is determined by: (i) n0 = t if r 2 S1;
(ii) n0 = t or n0 = t+ 1 if r 2 S2.
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Proof. Let m > 0 and suppose n0 > 2. Considering case (i), for n 2 [1; n0) we
have c� (n+ 1=2) > c� (n0 � 1=2) > 1=6, that is

6mp(c� (n+ 1=2)) > mp >
3m(2A� 1) + 3mp(2n+ 1)

3;75(np+A)2 � 1
;

wherefrom 22;5(np+ A)2mp(c� (n+ 1=2)) > q, i.e.

45(np+A)2mpq

�
c�

�
n+

1

2

���
n+

1

2
+

2B + 1

2q

�
> q((2n+ 1)q + 2B + 1);

i.e.

45(np+A)2mpq

��
c�

�
n+

1

2

���
n+

1

2
+

2B + 1

2q
+

p

6mq

�
+

1

4
�

1

36m2

�

> q((2n+ 1)q + 2B + 1):

This is (with an = pn+A, bn = qn+B) exactly

45a2n(Bn+1An �BnAn+1) > Bn+1 �Bn;

so we have proved the validity of the conditions of Proposition C. Hence,
sn(p; q; A;B) is strictly increasing for n 2 [1; n0].

Otherwise, for m > 0 and n > n0 we have

BnAn+1 �Bn+1An =

��
nq +B +

1

2

�2
+

1

12

���
(n+ 1)p+A�

1

2

�2
+

1

12

�
�

�

��
(n+ 1)q +B +

1

2

�2
+

1

12

���
np+A�

1

2

�2
+

1

12

�

= mpq

��
n+

1

2
� c

��
n+

1

2
+

2B + 1

2q
+

p

6mq

�
�

1

4
+

1

36m2

�

> mpq

��
n0 +

1

2
� c

��
n0 +

1

2
+

2B + 1

2q
+

p

6mq

�
�

1

4
+

1

36m2

�
> 0;

since n0 +
1

2
� c

�
> 1=2; c < 1;

> 1=6; c > 1:

Hence, under the conditions of Proposition A, the sequence sn(p; q; A;B) is
strictly decreasing for n > n0. It follows that, in this case:

s�(p; q; A;B) = sn0(p; q; A;B); s�(p; q; A;B) = min(s1(p; q; A;B); ln(q=p)):

What is the exact value of this minimum stays ambiguous and depends how large
is the ratio p=A (as could be seen using inequalities from [4]).

The proof of the case (ii) goes on similar lines, so we omit it here.

Now we expose a generalized form of Theorem D.
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Theorem E. Let f : N ! N be any strictly increasing integer function. De-
�ne:

Sf(n) = Sf(n)(p; q; A;B) :=
1

pf(n) +A
+

1

pf(n) +A+ 1
+ � � �+

1

qf(n) +B
;

with p; q; A;B;m; c; r; t; n0 same as in Theorem D. Let

S� = S�(p; q; A;B) := inf
n
Sf(n); S� = S�(p; q; A;B) := sup

n
Sf(n):

Proposition E1. If m < 0 then the sequence Sf(n) is strictly increasing for
each n, n 2 N; hence, S� = Sf(1); S

� = Sf(1) = ln(q=p).

Proposition E2. If m > 0, (Sf(n)) is strictly increasing for n 2 [1; k0], where
k0 := max(1;maxk(f(k) 6 n0)). So, in this case S� = Sf(1); S

� = Sf(k0).

Proposition E3. If m > 0, (Sf(n)) is strictly decreasing for n > k1, where
k1 := mink(f(k) > n0); hence: S� = Sf(1) = ln(q=p); S� = Sf(k1).

Proof of Theorem E is obvious and immediately follows from Theorem D. For
example, validity of Proposition E1 could be proved like this:

Let f(i) = ki, i 2 N. Since f(�) is strictly increasing on N, so is the sequence
(ki). According to Proposition D1, for m 6 0, sn(p; q; A;B) is strictly increasing
for each n, n 2 N. We conclude that sk1(�) < sk2(�) < � � � < skn(�) < � � � , i.e.
Sf(1) < Sf(2) < � � � < Sf(n) < � � � .

Propositions E2,3 could be proved in a similar manner.

For an illustration, we take sequences (an), (bn) in the form of geometrical
progression, i.e. an = pan, bn = qan; p < q, a > 1; p; q; a 2 N.

Proposition F. The sequence

s(pan; qan) :=
1

pan
+

1

pan + 1
+

1

pan + 2
+ � � �+

1

qan

is strictly decreasing for each n, n 2 N. Hence, s� = limn s(�) = ln(q=p); s� =
s(pa; qa).

Proof. Put in Theorem E: A = p, B = q, f(n) = an � 1; then: m :=
p(2B + 1) � q(2A � 1) = p + q > 0; c < 0; n0 = 1; so, from Proposition E3 it
follows that the considered sequence is strictly decreasing for each n, n 2 N, and
conclusion follows.

For the sake of completeness we note a possibility to prove (using Proposition
A), that the sequence (s(pan; qbn)); a < b, pa 6 qb; a; b; p; q 2 N; is strictly
increasing for each n, n 2 N. Hence, in this case s� = s(pa; qb); s� = +1.
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