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ON S-CLOSED AND EXTREMALLY DISCONNECTED
FUZZY TOPOLOGICAL SPACES

Zlata Petricevié

Abstract. The concepts of a filter-base and s-convergence and #-convergence of a filter-base
in a fuzzy setting are defined and investigated. Fuzzy filter-base is used to characterize fuzzy S-
closed and extremally disconnected spaces. Several other properties of these two types of spaces
and comparison between different forms of compactness in fuzzy topology are established.

Introduction

The concept of filters in fuzzy set theory was introduced by Lowen and at
the same time by Katsaras who studied in his work [11] fuzzy filters, ultra filters,
clusters and the convergence of filters in fuzzy setting. In this paper we have
developed the theory of filters a little further and introduced s-convergence and
f-convergence of a filter (filter-base).

We offer several characterizations of fuzzy S-closed and fuzzy extremally dis-
connected spaces in terms of fuzzy filter-bases and fuzzy nets. The results are
parallel to ones which have been found in general topology. A systematic discus-
sion of these properties in general topology is given in [7], [10], [16] and [17].

In the last section we study the implications between different forms of com-
pactness and comparison with S-closedness and extremal disconnectedness in a
fuzzy setting.

1. Preliminaries

Throughout the paper by (X, 7x ), or simply by X, we mean a fuzzy topological
space (fts, shortly) of Chang [3]. A fuzzy singleton with support x and value «
(0 < a £ 1) will be denoted by z,. Two fuzzy sets A\ and p are said to be q-
coincident if there exists € X such that A(xz) + u(z) > 1 and by ¢ we denote “is
not g-coincident”. A fuzzy set A is said to be a g-neighbourhood (g-nbd) of z, if
there is a fuzzy open set p such that z, ¢ p and u < A, where A < p if AM(z) < p(x),
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for all z € X. We denote ny N(zo) (Ny(z«)) the neighbourhood (g-nbd) system
of z, [12]. For a fuzzy set A in an fts X by ClA, SCLA, Int A, supp A we denote
the closure, semi-closure, interior and support of A, respectively. By Ox and 1x we
mean the constant fuzzy sets taking the values 0 and 1 on X, resp. For the defnition
of fuzzy regularly open (RO(X)), regularly closed (RC(X)), semi-open (SO(X))
and semi-closed (SC(X)) sets we refer to Azad [2]. A fuzzy point z, € Cls A
(zo € Clp A) if 24 q U implies U ¢ A, for each U € RO(X) (z, q U implies C1U ¢ A
for each U € 7x resp.). A fuzzy set ) is called é-closed (#-closed resp.) if A = Clg A
(A =Clg \). It is known [15] that for any set A, A < SCLA < CIA < Cls A < Clp A

An fts (X, 7x) is said to be semi-regular if the fuzzy regularly open sets of
X form a base for 7x [2]. For (X, 7x), Xs denotes the semiregularization of X,
ie. Xg = (X,75) and Ng(x,) the nbd-system of z, in Xg. An fts X is called
fuzzy almost regular (fuzzy regular, resp.) if every fuzzy regularly open (resp.
fuzzy open) set A of X can be expressed as a union of fuzzy regularly open (fuzzy
open, resp.) sets U, such that ClU, < A, for all a. Fuzzy regularity implies fuzzy
semi-regularity as well as fuzzy almost regularity (see [1] and [15]).

2. Nets and filters in fuzzy topology

DEFINITION 2.1 [12] Let (D, >) be a directed set. Let X be an ordinary set.
Let J be the collection of all fuzzy points in X. A function S: D — 7 is called a
fuzzy net in X. For n € D, S(n) is often denoted by z , where ™ is the support
and «, is the value of the n-th member of the fuzzy set. Hence the net S is often
denoted by {z}, ,n € D} and it is called a-net if a, — a.

DEFINITION 2.2 [12] A fuzzy net {27 } is said to be g-coincident with A € I*
if for each n € D, z7, is g-coincident with A; it is said to be eventually g-coincident
(or g-final) with X if there is an m € D such that if n € D and n > m, then z, is
g-coincident with ); it is said to be frequently g-coincident (or g-cofinal) with A if
for each m € D, there is an n € D such that n > m and 27, is q-coincident with A.

DEFINITION 2.3. [12] A fuzzy net {z}, } in an fts X is said to converge to a
fuzzy point z, if {z}, } is eventuallly g-coincident with each q-nbd of z,.

DEFINITION 2.4. [11] Let B be a nonempty family of fuzzy subsets of IX. Then
B is called a base for a fuzzy filter on X (or a fuzzy filter-base) if the following two
conditions are satisfied:

(1) 0x ¢ 5;
(2) if Ay, A2 € B, then A\ A X2 € B.
If B has the property
(3) A € Band X\ < p implies p € B,
then B is called a fuzzy filter on X.

A maximal, with respect to set inclusion, fuzzy filter on X is called a fuzzy
ultra-filter or a maximal filter (or filter-base). If B is a base for a fuzzy filter on
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X, the collection Fz = {pu € I’* : I\ € B with A < p } is the fuzzy filter generated
by B. We say that a filter F is finer than a filter F5 if F» < F}, i.e. if for each
A € Fy, there exists o € Fy such that p < A,

Bellow are listed some results on fuzzy filter bases (ffb, shortly) which one can
prove in a straightforward manner.

THEOREM 2.1. (1) Let Fy, Fy be any ffb on fts X. Then the family Fy V F> =
{M VA €F L, € Fy}isan ffb on X.

(2) If A\t AXy # 0 for each My € Fy and each Ay € Fy, then Fy ANFy = { A1 AXg :
AL € Fi, A € By} is an ffb on X.

(3) A nonempty family B C I is an ffb on X iff for any finite collection {\; }7
from B, Ni_; A # 0.

(4) Let B is an ffo on X and let f: X — Y be a function. Then f(B) = {f(\):
A€ B} isan ffb on Y. If f is onto and B is an ffb on Y, then f~Y(B) = {f1(u) :
w € B} is an ffb on X.

DEFINITION 2.5. A fuzzy point z, is said to be a cluster point of a filter-base
B (i.e. Fg) if every g-nbd of z,, is g-coincident with each member of B.

PROPOSITION 2.1. A fuzzy point z, (0 < a < 1) in an fts X is a cluster point
of a filter-base B iff x4 € CLA, for each X\ € B.

Proof. 1t is straightforward. This proposition is equivalent to the definition
3.2[6]. =

DEFINITION 2.6. [6] A filter-base B is said to converge to z, (denoted by

B — x,) if every ¢-nbd of z, contains a member of B and x, € Cl\, for every
A EB.

THEOREM 2.2. Let F be an ffb on fts X and xs a fuzzy point. Then:
(1) F — xq iff Ny(zo) < F.
(2) If B is a base for the ¢-nbd system of x,, then B — x,.

(3) If x4 is a cluster point of an [fb F on X and U is a g-nbd of ., then
G={AAU:XeF}is finer than F and G — x,.

(4) Let X be a non-empty fuzzy set. If F — x4 and there exists p € F such
that p < A, then x4 € CLA.

The proof is straightforward.

THEOREM 2.3. Let xo be a fuzzy point in an fts X. Then

(1) xo is a cluster point of an ffb F iff there exists an [fb B finer than F and
B — x,.

(2) If F — z,, then x4 is a cluster point of F.
(3) If x is a cluster point of a fuzzy ultra-filter F', then F — x,.
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Proof. (1) B = Ny(za) VIAAU : X € F,U € Ny(z,)} is an fib finer than F
and B — x,. Converesely, let B — z, and let B < F'. Let A € F. Since B < F,
there exists u € F such that u < A; z, € Clp implies x, € CLA, for each A € F,
i.e. T4 is a cluster point of F.

(2) It follows from (1).

(3) Since z, is a cluster point of an ultra-filter F', that means that for each
U € Ny(zo), U g A, for each A € F, that implies U A XA # 0 and hence U € F.
Therefore F — x,.m

COROLLARY 2.1. If x, is a cluster point of a filter Fy that is finer than F5,
then xo 1s a cluster point of the filter Fy. If x, is a limit of the filter Fy, then x4
is the limit of every filter Fy finer than F.

PROPOSITION 2.2. [11] Let X, Y be fts’s and xo be a fuzzy point in X. If f
is @ mapping from X toY, continuous at x, then for every filter-base B, B — x4
implies f(B) — f(x)q4-

DEFINITION 2.7. We say that a fuzzy point x, € SCly A if for each semi open
fuzzy set U, x, q U implies C1U ¢ A.

DEFINITION 2.8. A fuzzy filter (or a filter-base) F is said to:
(1) é-accumulate to x4 if z, € Cls A, for each A € F [6].

(2) s-accumulate to x, if o € SCly A, for each X € F.

(1) f-accumulate to x, if z, € Clp A, for each X € F.

DEFINITION 2.9. Let (X,7x) be an fts and let NI(z,) be the q-nbd filter
in Xg, i.e. the filter generated by regular open fuzzy sets; S(z,) be the filter
generated by the family SO(z,) = {Cl\ : 24 ¢ A € SO(7x)}, and X (z,) be the
filter generated by C(zy) = {CIX : 24 ¢ A € 7x}. We say that a filter (or a
filter-base) F

(1) d-converges to x4 if N&(z) < F;
(2) s-converges to x, if S(z,) < F}
(3) O-converges to x, if C(x,) < F.

PROPOSITION 2.3. A filter (or a filter-base) F in an fts X

(1) 6-converges to xo iff every fuzzy regular open g-nbd of x, contains some
member of F' and xo € Cls A for each \ € F;

(2) s-converges to xo iff for each fuzzy semi open g-nbd p of xo there is a
A € F such that A < Clpu and x4 € SCly A, for each A € F;

(3) B-converges to x4 iff for every open q-nbd p of xo there is A € F' such that
AL Cly and x4, € Clg A for each X € F.

Proof. Easy. m

THEOREM 2.4. A filter-base B (or a filter) on X s-accumulates (8-accumulates,
resp.) iff there exists o filter F finer than B which s-converges (8-converges, resp.).
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Proof. Let z, be an s-cluster point of 5. Then z, € SCly A, for every A € B.
Hence for every u € SO(z,) and for each A € B, u q z, implies Clu ¢ A, ie.
Clpu A X #0. Therefore BV {Clu: p € SO(z4)} is a system of generators for some
filter F' finer than B and it s-converges to x,. The converse is obvious. Similarly
for a f-cluster point. m

3. S-closed and extremally disconnected fuzzy topological spaces

DEFINITION 3.1. [3,5] A family {A, : @ € I} of fuzzy open subsets of a
fuzzy topological space (X, 7x) is called a cover if \/{\y : @ € I} = X. A fuzzy
topological space is called compact (shortly FC) if every open cover has a finite
subcover. An fts X is said to be fuzzy nearly (almost) compact (shortly FNC
(FAQ)) if every open cover contains a finite subfamily {A,, : ¢ = 1,...,n} such
that X = \/_, Int Cl1\,, (X =V, Cl\,,).

DEFINITION 3.2. [15] An fts X is fuzzy §-compact (denoted FOC) if every
open cover contains a finite §-open subcover.

DEFINITION 3.3. [4] An fts X is S-closed if every fuzzy semi-open cover {\, :
« € I} contains a finite subfamily {\,, }/=; such that X =\/_, Cl)\,,.

DEFINITION 3.4. [9] An fts X is extremally disconnected (denoted FED) if
the closure of every fuzzy open set is open.

Using all these definitions it is easy to see that the following implications hold:

FéC = FC = FNC = FAC.

THEOREM 3.1. A semi-regular fts X is F6C iff it is FC.
Proof. The proof follows easily from the fact that 7¢ = 7x. m

Using results from [5] and [15] and theorem 3.1, we have:

THEOREM 3.2. a) If fts X is semi-regular, then F6C ~ FC ~ FNC;

b) if X is fuzzy regular, then F6C ~ FC ~ FNC ~ FAC (“~” means “is
equivalent”).

THEOREM 3.3. Let an fts (X, 7x) be S-closed. Then for every family of fuzzy
open sets {\q : « € I} of X with finite intersection property (FIP, shortly) it holds

A, C1 A, # 0.

Proof. Let {\q}acr be a family of fuzzy open sets with FIP. If A _ Cl\, =0,
then \/ (1 —Cl\,) = 1x and {1 —Cl\,}, is a semi-open cover of X. Hence, there
exists a finite subcollection {\,, }7=; such that \/]_, CI(1-Cl\,,) = 1x. Therefore
Ay Aes S A (1= CI(1 = Cl\,,)) =0, a contradiction. Hence A, ClA, #0.m

THEOREM 3.4. If an fts (X, 7x) is extremally disconnected and for any family
of fuzzy open sets {\q}a of X with FIP it holds A\, Cl A, # 0, then X is S-closed.



42 Z. Petricevié

Proof. Let {\s}acr be a semi-open cover of X and suppose that X is not S-
closed. Hence for each finite family {A\, }7;, Vi, Cl A4, < 1. Therefore A, (1 —
ClAy;) # 0, ie. {1 —ClAy}y is a family of fuzzy open sets with FIP. Hence
A, Cl(1 — ClA,) # 0. Since X is FED and since Cl\, = ClInt\,, for each
Ao € SO(X) it follows that Cl\, is fuzzy open for each « € I, i.e. 1 — ClA, is
fuzzy closed. Thus

Ve <\ O =\/(1-(1-ClIA)) =\/(1-Cl(1 - ClA,)) < 1x,

« «

a contradiction (since {A,}, is a cover of X). m

PROPOSITION 3.1. An fts X is S-closed iff any cover by regular closed sets has
a finite subcover.

Proof. Tt is trivial, since the closure of a semi-open set is regular closed,
therefore semi-open. Even more, it is easy to see that RC(X) = {Cl\, : Ay €
SO(X)}.m

COROLLARY 3.1. S-closedness is a fuzzy semireqular property, i.e. X is S-
closed iff Xg is S-closed.

Proof. The proof is straightforward since an fts and its semiregularization have
the same fuzzy regular closed sets. m

THEOREM 3.5. For an fts X the following are equivalent:
(1) X is S-closed;
(2) each filter-base in X s-accumulates;

(3) every mazimal filter-base on X s-converges.

Proof. (2) <= (3). See theorem 2.1.

(1) < (3). Let X be S-closed and let F' be a maximal filter-base on X
which doesn’t s-converge. Therefore, it doesn’t s-accumulate to any point. This
implies that for each point z, there exists a semi-open set u, € S(z,) and an
element A\, € F such that z, ¢ e and Clu, § Ao. Without loss of generality, we
may assume that C' = {ua}, crx is a semi-open cover of X, because if o ¢ pa,
then Zor = X1—o € pa, for each « € (0,1). Since X is S-closed, there exists a finite
subcollection {sa, }7=; such that X = \/[_, Clu,,. Since F is a maximal filter-base
there exists A # 0, A € F such that A < A, Ao, and Ao, ¢ Clu,,, for each i.
This implies that A ¢ Clu,,, for each i = 1,...,n, ie. A ¢ Vi  Clps, = X, a
contradiction, since A # 0.

Conversely, suppose X is not S-closed and let {\,}ocr be a semi-open cover
of X such that \/]_, Cl\,, < X for every finite family {\,, : i = 1,...,n}. Then
there exists an x; such that Cl Ay, (z;) < t, for each 1 < i < n. Hence pq,(z;) =
(1 = ClAs, ) (x) > 1 —t, i.e. fia, ¢ z¢ and po, € SO(X). Therefore A", o, # 0,
for each finite intersection. Hence {jiq }o forms a filter-base B which s-accumulates
to ;. Then there exists a maximal filter-base F' which s-converges to x;, and this
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implies that \/_, Cl Ao # X. Therefore \/_ Ao # X, a contradiction, since {\s}o is
acoverof X.m

It is known that the product of S-closed spaces is not necessarily S-closed,
even in general topology. In fuzzy topology for fuzzy spaces X and Y, where X is
product related to Y (cf. [2, Definition 3.7; Theorem 3.10; Theorem 4.6]) we have
the following result:

THEOREM 3.6. Let (X,7x) and (Y, 7y ) be S-closed fts’s such that X is product
related to Y. Then fuzzy topological product X XY is S-closed.

Proof. Let {\a}a and {us}s be semi-open covers for X, respectively Y. Then
{Aa X pgta,p is fuzzy semi-open cover of X x Y. For finite n € N we have
V?:l ClAq; X V?:l Clpg, = V?:l Cl()‘a,: X :uﬁ.:)v Le. X xY = V?:l Cl()‘az x :uﬁ.:)'
Thus X x Y is S-closed. m

DEFINITION 3.5. [14] A function f: X — Y is said to be fuzzy semi-continuous
(resp. irresolute) of f=(u) € SO(X), for any fuzzy open (resp. semi-open) set y
of Y.

THEOREM 3.7. [4] If f: X — Y is an irresolute surjection from an S-closed
fts X to an ftsY, then Y is S-closed.

Since fuzzy semi-continuous and almost open (i.e. f~1(CI\) < Cl f=1()), for
each A\ € Ty) mapping implies that f is irresolute [6] we have the following corollary:

COROLLARY 3.2. An image of an S-closed space under an almost open fuzzy
continuous surjection is S-closed.

DEFINITION 3.6. A property of fts is called fuzzy semi-topological if it is
preserved by fuzzy semi-homeomorphism (i.e. bijection and such that the images
of semi-open sets are semi-open and the inverses of semi-open sets are semi-open).

COROLLARY 3.3. To be an S-closed fts is a fuzzy semi-topological property.

THEOREM 3.8. For an fts (X, 7x) the following are equivalent:

(1) X is FED.

(2) If a filter base on X 6-converges, then it s-converges.

(3) A filter-base X s-converges iff it 8-converges.

(4) If a filter-base on X converges with respect to the topology Tx, then it
s-converges.

Proof. We shall first prove the following lemma.

LeEmMA 3.1. If an fts X is FED, then SCI\A = Cly A, for each A € SO(X).

Proof of Lemma. SCIA < CIXA < Cls A < Clg A, for each A € IX. We shall
prove that Clp A < SCLA, for A € SO(X). Let z, € SClLA, then there exists
U € SO(X) such that z, ¢ U and U q A, which implies that U < \°, where
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A¢=1— X\ Hence CIU < CI(\°). Since X is FED, then ClU is open. Therefore
ClU < Int Cl(A¢) < SCL(\¢) = A°. Hence C1U G A and so 2, ¢ Cly A. m

COROLLARY 3.4. If X is FED, then SCIA = CI1\A = Cls A = Cly A, for each
A€ SO(X).

Using the results above, the proof of theorem 3.8 is now straightforward. m

REMARK 3.1. From the above corollary and Lemma 7 and Theorem 12 in
[9] we have the following: SCIA = CIA = ClsA = Cly A, for every fuzzy set
A € SO(X)UPO(X), where PO(X) is the set of all fuzzy pre-open sets in X.
Also it is easy to prove that definition of rc-convergence [9] is equivalent to our
definition of s-convergence.

LEMMA 3.2. Let X be fuzzy almost reqular and S-closed. Then X is FED and
fuzzy nearly compact (FNC).

Proof. Suppose that X is not FED. Then there exists a fuzzy regular open
set A such that ClA(z) > A(x) for some 2 € X and ClX # 1x. Let z, € CIA
and z, ¢ A. For every open q-nbd U of z,, we have U A A # 0. Therefore
F={UAMX:U € Ny(z4)} forms a filter-base in C1\. Since Cl\ is S-closed relative
to X, then F = yg, i.e. F' s-converges to some point yz € ClA. If yg ¢ A, then
Yy ¢ A°=1—X € RC(X), hence 1 — X is semi-open and 1 — X € S(yg). Therefore,
there exists p € F such that ¢ < 1 — A, i.e. o ¢ A. Since F' — ys in the usual
sense and yg € Clu < 1 — A, therefore every member of F' is g-coincident with
1 — A, what is impossible. Hence yg € A. Almost regularity and A € RO(X) imply
that A € S(yg), i.e. there exists V € RO(X) such that yg ¢ V < C1V < A. Since
To ¢ A, then 2, ¢ C1VC =1 —ClV is an open g-nbd of z,. Since Ny(zo) — Za,
there exists a q-nbd U of x, such that (UAX) <1—-ClV, ie. (UAX)gClV. But
that contradicts the fact that F = yz. Therefore it must be zo = yg, i.e. CLA = A,
Hence X is FED.

To prove nearly compactness, let ¢/ be a maximal filter-base. S-closedness
implies that U s-converges. Theorem 3.8.(3) implies that &/ H-converges. Almost
regularity implies that U §-converges. Since X is fuzzy nearly compact (see Theo-
rem 3.9 [13] and Theorem 2.3) iff every maximal filter-base §-converges, then this
completes the proof. m

COROLLARY 3.5. Let X be an almost reqular fts. Then X is S-closed iff X is
FNC and FED iff Xg is reqular, compact and FED.

THEOREM 3.9. Let fts (X,7x) be a fuzzy regular space. Then the following
are equivalent:

(1) X is compact and FED;
(2) X is S-closed;
(3) X is FAC and FED.

Proof. (1) = (2). See Theorem 3.4.
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(2) = (3). That S-closed implies FAC, follows directly from the definitions.
Using lemma 3.2 we have the proof of (2) = (3).

(3) = (1). The proof is straightforward. m

COROLLARY 3.6. (cf. [4, Theorem 3.7; Corollary 3.8]) Let X be fuzzy reqular
and extremally disconnected. Then the following is valid:

FC ~ F6C ~ S-closed ~ FAC ~ FNC.
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