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ON S-CLOSED AND EXTREMALLY DISCONNECTED

FUZZY TOPOLOGICAL SPACES

Zlata Petri�cevi�c

Abstract. The concepts of a �lter-base and s-convergence and �-convergence of a �lter-base
in a fuzzy setting are de�ned and investigated. Fuzzy �lter-base is used to characterize fuzzy S-
closed and extremally disconnected spaces. Several other properties of these two types of spaces
and comparison between di�erent forms of compactness in fuzzy topology are established.

Introduction

The concept of �lters in fuzzy set theory was introduced by Lowen and at
the same time by Katsaras who studied in his work [11] fuzzy �lters, ultra �lters,
clusters and the convergence of �lters in fuzzy setting. In this paper we have
developed the theory of �lters a little further and introduced s-convergence and
�-convergence of a �lter (�lter-base).

We o�er several characterizations of fuzzy S-closed and fuzzy extremally dis-
connected spaces in terms of fuzzy �lter-bases and fuzzy nets. The results are
parallel to ones which have been found in general topology. A systematic discus-
sion of these properties in general topology is given in [7], [10], [16] and [17].

In the last section we study the implications between di�erent forms of com-
pactness and comparison with S-closedness and extremal disconnectedness in a
fuzzy setting.

1. Preliminaries

Throughout the paper by (X; �X), or simply by X , we mean a fuzzy topological
space (fts, shortly) of Chang [3]. A fuzzy singleton with support x and value �
(0 < � 6 1) will be denoted by x�. Two fuzzy sets � and � are said to be q-
coincident if there exists x 2 X such that �(x) + �(x) > 1 and by �q we denote \is
not q-coincident". A fuzzy set � is said to be a q-neighbourhood (q-nbd) of x� if
there is a fuzzy open set � such that x� q � and � 6 �, where � 6 � if �(x) 6 �(x),
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for all x 2 X . We denote ny N(x�) (Nq(x�)) the neighbourhood (q-nbd) system
of x� [12]. For a fuzzy set � in an fts X by Cl�, SCl�, Int�, supp� we denote
the closure, semi-closure, interior and support of �, respectively. By 0X and 1X we
mean the constant fuzzy sets taking the values 0 and 1 on X , resp. For the defnition
of fuzzy regularly open (RO(X)), regularly closed (RC(X)), semi-open (SO(X))
and semi-closed (SC(X)) sets we refer to Azad [2]. A fuzzy point x� 2 Cl� �
(x� 2 Cl� �) if x� q U implies U q �, for each U 2 RO(X) (x� q U implies ClU q �
for each U 2 �X resp.). A fuzzy set � is called �-closed (�-closed resp.) if � = Cl� �
(� = Cl� �). It is known [15] that for any set �, � 6 SCl� 6 Cl� 6 Cl� � 6 Cl� �.

An fts (X; �X) is said to be semi-regular if the fuzzy regularly open sets of
X form a base for �X [2]. For (X; �X), XS denotes the semiregularization of X ,
i.e. XS = (X; �S) and NS(x�) the nbd-system of x� in XS . An fts X is called
fuzzy almost regular (fuzzy regular, resp.) if every fuzzy regularly open (resp.
fuzzy open) set � of X can be expressed as a union of fuzzy regularly open (fuzzy
open, resp.) sets U� such that ClU� 6 �, for all �. Fuzzy regularity implies fuzzy
semi-regularity as well as fuzzy almost regularity (see [1] and [15]).

2. Nets and �lters in fuzzy topology

Definition 2.1 [12] Let (D;>) be a directed set. Let X be an ordinary set.
Let J be the collection of all fuzzy points in X . A function S : D ! J is called a
fuzzy net in X . For n 2 D, S(n) is often denoted by xn�n , where x

n is the support
and �n is the value of the n-th member of the fuzzy set. Hence the net S is often
denoted by fxn�n ; n 2 Dg and it is called �-net if �n ! �.

Definition 2.2 [12] A fuzzy net fxn�ng is said to be q-coincident with � 2 IX

if for each n 2 D, xn�n is q-coincident with �; it is said to be eventually q-coincident
(or q-�nal) with � if there is an m 2 D such that if n 2 D and n > m, then xn�n is
q-coincident with �; it is said to be frequently q-coincident (or q-co�nal) with � if
for each m 2 D, there is an n 2 D such that n > m and xn�n is q-coincident with �.

Definition 2.3. [12] A fuzzy net fxn�ng in an fts X is said to converge to a
fuzzy point x� if fxn�ng is eventuallly q-coincident with each q-nbd of x�.

Definition 2.4. [11] Let B be a nonempty family of fuzzy subsets of IX . Then
B is called a base for a fuzzy �lter on X (or a fuzzy �lter-base) if the following two
conditions are satis�ed:

(1) 0X =2 B;

(2) if �1; �2 2 B, then �1 ^ �2 2 B.

If B has the property

(3) � 2 B and � 6 � implies � 2 B,

then B is called a fuzzy �lter on X .

A maximal, with respect to set inclusion, fuzzy �lter on X is called a fuzzy
ultra-�lter or a maximal �lter (or �lter-base). If B is a base for a fuzzy �lter on



On S-closed and extremally disconnected fuzzy topological spaces 39

X , the collection FB = f� 2 IX : 9� 2 B with � 6 � g is the fuzzy �lter generated
by B. We say that a �lter F1 is �ner than a �lter F2 if F2 < F1, i.e. if for each
� 2 F2, there exists � 2 F1 such that � 6 �.

Bellow are listed some results on fuzzy �lter bases (�b, shortly) which one can
prove in a straightforward manner.

Theorem 2.1. (1) Let F1, F2 be any �b on fts X. Then the family F1 _F2 =
f�1 _ �2 : �1 2 F1; �2 2 F2 g is an �b on X.

(2) If �1^�2 6= 0 for each �1 2 F1 and each �2 2 F2, then F1^F2 = f�1^�2 :
�1 2 F1; �2 2 F2 g is an �b on X.

(3) A nonempty family B � IX is an �b on X i� for any �nite collection f�ig
n
1

from B,
Vn

i=1 �i 6= 0.

(4) Let B is an �b on X and let f : X ! Y be a function. Then f(B) = ff(�) :
� 2 Bg is an �b on Y . If f is onto and B is an �b on Y , then f�1(B) = ff�1(�) :
� 2 Bg is an �b on X.

Definition 2.5. A fuzzy point x� is said to be a cluster point of a �lter-base
B (i.e. FB) if every q-nbd of x� is q-coincident with each member of B.

Proposition 2.1. A fuzzy point x� (0 < � 6 1) in an fts X is a cluster point
of a �lter-base B i� x� 2 Cl�, for each � 2 B.

Proof. It is straightforward. This proposition is equivalent to the de�nition
3.2 [6].

Definition 2.6. [6] A �lter-base B is said to converge to x� (denoted by
B ! x�) if every q-nbd of x� contains a member of B and x� 2 Cl�, for every
� 2 B.

Theorem 2.2. Let F be an �b on fts X and x� a fuzzy point. Then:

(1) F ! x� i� Nq(x�) < F .

(2) If B is a base for the q-nbd system of x�, then B ! x�.

(3) If x� is a cluster point of an �b F on X and U is a q-nbd of x�, then
G = f� ^ U : � 2 Fg is �ner than F and G! x�.

(4) Let � be a non-empty fuzzy set. If F ! x� and there exists � 2 F such
that � 6 �, then x� 2 Cl�.

The proof is straightforward.

Theorem 2.3. Let x� be a fuzzy point in an fts X. Then

(1) x� is a cluster point of an �b F i� there exists an �b B �ner than F and
B ! x�.

(2) If F ! x�, then x� is a cluster point of F .

(3) If x� is a cluster point of a fuzzy ultra-�lter F , then F ! x�.
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Proof. (1) B = Nq(x�) _ f� ^ U : � 2 F;U 2 Nq(xa)g is an �b �ner than F
and B ! x�. Converesely, let B ! x� and let B < F . Let � 2 F . Since B < F ,
there exists � 2 F such that � 6 �; x� 2 Cl� implies x� 2 Cl�, for each � 2 F ,
i.e. x� is a cluster point of F .

(2) It follows from (1).

(3) Since x� is a cluster point of an ultra-�lter F , that means that for each
U 2 Nq(x�), U q �, for each � 2 F , that implies U ^ � 6= 0 and hence U 2 F .
Therefore F ! x�.

Corollary 2.1. If x� is a cluster point of a �lter F1 that is �ner than F2,
then x� is a cluster point of the �lter F2. If x� is a limit of the �lter F2, then x�
is the limit of every �lter F1 �ner than F2.

Proposition 2.2. [11] Let X, Y be fts's and x� be a fuzzy point in X. If f
is a mapping from X to Y , continuous at x�, then for every �lter-base B, B ! x�
implies f(B)! f(x)�.

Definition 2.7. We say that a fuzzy point x� 2 SCl� � if for each semi open
fuzzy set U , x� q U implies ClU q �.

Definition 2.8. A fuzzy �lter (or a �lter-base) F is said to:

(1) �-accumulate to x� if x� 2 Cl� �, for each � 2 F [6].

(2) s-accumulate to x� if x� 2 SCl� �, for each � 2 F .

(1) �-accumulate to x� if x� 2 Cl� �, for each � 2 F .

Definition 2.9. Let (X; �X ) be an fts and let N q
S(x�) be the q-nbd �lter

in XS , i.e. the �lter generated by regular open fuzzy sets; S(x�) be the �lter
generated by the family SO(x�) = fCl� : x� q � 2 SO(�X )g, and X(x�) be the
�lter generated by C(x�) = fCl� : x� q � 2 �Xg. We say that a �lter (or a
�lter-base) F

(1) �-converges to x� if N q
S(x�) < F ;

(2) s-converges to x� if S(x�) < F ;

(3) �-converges to x� if C(x�) < F .

Proposition 2.3. A �lter (or a �lter-base) F in an fts X

(1) �-converges to x� i� every fuzzy regular open q-nbd of x� contains some
member of F and x� 2 Cl� � for each � 2 F ;

(2) s-converges to x� i� for each fuzzy semi open q-nbd � of x� there is a
� 2 F such that � 6 Cl� and x� 2 SCl� �, for each � 2 F ;

(3) �-converges to x� i� for every open q-nbd � of x� there is � 2 F such that
� 6 Cl� and x� 2 Cl� � for each � 2 F .

Proof. Easy.

Theorem 2.4. A �lter-base B (or a �lter) on X s-accumulates (�-accumulates,
resp.) i� there exists a �lter F �ner than B which s-converges (�-converges, resp.).
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Proof. Let x� be an s-cluster point of B. Then x� 2 SCl� �, for every � 2 B.
Hence for every � 2 SO(x�) and for each � 2 B, � q x� implies Cl� q �, i.e.
Cl�^ � 6= 0. Therefore B_ fCl� : � 2 SO(x�)g is a system of generators for some
�lter F �ner than B and it s-converges to x�. The converse is obvious. Similarly
for a �-cluster point.

3. S-closed and extremally disconnected fuzzy topological spaces

Definition 3.1. [3,5] A family f�� : � 2 Ig of fuzzy open subsets of a
fuzzy topological space (X; �X ) is called a cover if

W
f�� : � 2 Ig = X . A fuzzy

topological space is called compact (shortly FC) if every open cover has a �nite
subcover. An fts X is said to be fuzzy nearly (almost) compact (shortly FNC
(FAC)) if every open cover contains a �nite subfamily f��i : i = 1; . . . ; ng such
that X =

Wn

i=1 IntCl��i (X =
Wn

i=1 Cl��i).

Definition 3.2. [15] An fts X is fuzzy �-compact (denoted F�C) if every
open cover contains a �nite �-open subcover.

Definition 3.3. [4] An fts X is S-closed if every fuzzy semi-open cover f�� :
� 2 Ig contains a �nite subfamily f��ig

n
i=1 such that X =

Wn

i=1 Cl��i .

Definition 3.4. [9] An fts X is extremally disconnected (denoted FED) if
the closure of every fuzzy open set is open.

Using all these de�nitions it is easy to see that the following implications hold:

F�C =) FC =) FNC =) FAC:

Theorem 3.1. A semi-regular fts X is F�C i� it is FC.

Proof. The proof follows easily from the fact that �S = �X .

Using results from [5] and [15] and theorem 3.1, we have:

Theorem 3.2. a) If fts X is semi-regular, then F�C � FC � FNC;

b) if X is fuzzy regular, then F�C � FC � FNC � FAC (\�" means \is
equivalent").

Theorem 3.3. Let an fts (X; �X) be S-closed. Then for every family of fuzzy
open sets f�� : � 2 Ig of X with �nite intersection property (FIP, shortly) it holdsV

�Cl�� 6= 0.

Proof. Let f��g�2I be a family of fuzzy open sets with FIP. If
V

�Cl�� = 0,
then

W
�(1�Cl��) = 1X and f1�Cl��g� is a semi-open cover of X . Hence, there

exists a �nite subcollection f��ig
n
i=1 such that

Wn

i=1 Cl(1�Cl��i) = 1X . ThereforeVn

i=1 ��i 6
Vn

i=1(1� Cl(1�Cl��i)) = 0, a contradiction. Hence
V

�Cl�� 6= 0.

Theorem 3.4. If an fts (X; �X) is extremally disconnected and for any family
of fuzzy open sets f��g� of X with FIP it holds

V
�Cl�� 6= 0, then X is S-closed.
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Proof. Let f��g�2I be a semi-open cover of X and suppose that X is not S-
closed. Hence for each �nite family f��ig

n
i=1,

Wn

i=1 Cl��i < 1. Therefore
Vn

i=1(1�
Cl��i) 6= 0, i.e. f1 � Cl��g� is a family of fuzzy open sets with FIP. HenceV

�Cl(1 � Cl��) 6= 0. Since X is FED and since Cl�� = Cl Int��, for each
�� 2 SO(X) it follows that Cl�� is fuzzy open for each � 2 I , i.e. 1 � Cl�� is
fuzzy closed. Thus

_

�

�� 6
_

�

Cl�� =
_

�

(1� (1�Cl��)) =
_

�

(1�Cl(1� Cl��)) < 1X ;

a contradiction (since f��g� is a cover of X).

Proposition 3.1. An fts X is S-closed i� any cover by regular closed sets has
a �nite subcover.

Proof. It is trivial, since the closure of a semi-open set is regular closed,
therefore semi-open. Even more, it is easy to see that RC(X) = fCl�� : �� 2
SO(X)g.

Corollary 3.1. S-closedness is a fuzzy semiregular property, i.e. X is S-
closed i� XS is S-closed.

Proof. The proof is straightforward since an fts and its semiregularization have
the same fuzzy regular closed sets.

Theorem 3.5. For an fts X the following are equivalent:

(1) X is S-closed;

(2) each �lter-base in X s-accumulates;

(3) every maximal �lter-base on X s-converges.

Proof. (2) () (3). See theorem 2.1.

(1) () (3). Let X be S-closed and let F be a maximal �lter-base on X
which doesn't s-converge. Therefore, it doesn't s-accumulate to any point. This
implies that for each point x� there exists a semi-open set �� 2 S(x�) and an
element �� 2 F such that x� q �� and Cl�� �q ��. Without loss of generality, we
may assume that C = f��gx�2IX is a semi-open cover of X , because if x� =2 ��,
then x�0 = x1�� 2 ��, for each � 2 (0; 1). Since X is S-closed, there exists a �nite
subcollection f��ig

n
i=1 such that X =

Wn

i=1 Cl��i . Since F is a maximal �lter-base
there exists � 6= 0, � 2 F such that � 6

Vn

i=1 ��i and ��i �q Cl��i , for each i.
This implies that � �q Cl��i , for each i = 1; . . . ; n, i.e. � �q

Wn

i=1 Cl��i = X , a
contradiction, since � 6= 0.

Conversely, suppose X is not S-closed and let f��g�2I be a semi-open cover
of X such that

Wn

i=1 Cl��i < X for every �nite family f��i : i = 1; . . . ; ng. Then
there exists an xt such that Cl��i(xt) < t, for each 1 6 i 6 n. Hence ��i(xt) =
(1 � Cl��i)(xt) > 1 � t, i.e. ��i q xt and ��i 2 SO(X). Therefore

Vn

i=1 ��i 6= 0,
for each �nite intersection. Hence f��g� forms a �lter-base B which s-accumulates
to xt. Then there exists a maximal �lter-base F which s-converges to xt, and this
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implies that
W

�Cl�� 6= X . Therefore
W

� �� 6= X , a contradiction, since f��g� is
a cover of X .

It is known that the product of S-closed spaces is not necessarily S-closed,
even in general topology. In fuzzy topology for fuzzy spaces X and Y , where X is
product related to Y (cf. [2, De�nition 3.7; Theorem 3.10; Theorem 4.6]) we have
the following result:

Theorem 3.6. Let (X; �X) and (Y; �Y ) be S-closed fts's such that X is product
related to Y . Then fuzzy topological product X � Y is S-closed.

Proof. Let f��g� and f��g� be semi-open covers for X , respectively Y . Then
f�� � ��g�;� is fuzzy semi-open cover of X � Y . For �nite n 2 N we haveWn

i=1 Cl��i �
Wn

i=1 Cl��i =
Wn

i=1 Cl(��i � ��i), i.e. X � Y =
Wn

i=1 Cl(��i � ��i).
Thus X � Y is S-closed.

Definition 3.5. [14] A function f : X ! Y is said to be fuzzy semi-continuous
(resp. irresolute) of f�1(�) 2 SO(X), for any fuzzy open (resp. semi-open) set �
of Y .

Theorem 3.7. [4] If f : X ! Y is an irresolute surjection from an S-closed
fts X to an fts Y , then Y is S-closed.

Since fuzzy semi-continuous and almost open (i.e. f�1(Cl�) < Cl f�1(�), for
each � 2 �Y ) mapping implies that f is irresolute [6] we have the following corollary:

Corollary 3.2. An image of an S-closed space under an almost open fuzzy
continuous surjection is S-closed.

Definition 3.6. A property of fts is called fuzzy semi-topological if it is
preserved by fuzzy semi-homeomorphism (i.e. bijection and such that the images
of semi-open sets are semi-open and the inverses of semi-open sets are semi-open).

Corollary 3.3. To be an S-closed fts is a fuzzy semi-topological property.

Theorem 3.8. For an fts (X; �X) the following are equivalent:

(1) X is FED.

(2) If a �lter base on X �-converges, then it s-converges.

(3) A �lter-base X s-converges i� it �-converges.

(4) If a �lter-base on X converges with respect to the topology �X , then it
s-converges.

Proof. We shall �rst prove the following lemma.

Lemma 3.1. If an fts X is FED, then SCl� = Cl� �, for each � 2 SO(X).

Proof of Lemma. SCl� 6 Cl� 6 Cl� � 6 Cl� �, for each � 2 IX . We shall
prove that Cl� � 6 SCl�, for � 2 SO(X). Let x� 2 SCl�, then there exists
U 2 SO(X) such that x� q U and U �q �, which implies that U 6 �c, where
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�c = 1� �. Hence ClU 6 Cl(�c). Since X is FED, then ClU is open. Therefore
ClU 6 IntCl(�c) 6 SCl(�c) = �c. Hence ClU �q � and so x� =2 Cl� �.

Corollary 3.4. If X is FED, then SCl� = Cl� = Cl� � = Cl� �, for each
� 2 SO(X).

Using the results above, the proof of theorem 3.8 is now straightforward.

Remark 3.1. From the above corollary and Lemma 7 and Theorem 12 in
[9] we have the following: SCl� = Cl� = Cl� � = Cl� �, for every fuzzy set
� 2 SO(X) [ PO(X), where PO(X) is the set of all fuzzy pre-open sets in X .
Also it is easy to prove that de�nition of rc-convergence [9] is equivalent to our
de�nition of s-convergence.

Lemma 3.2. Let X be fuzzy almost regular and S-closed. Then X is FED and
fuzzy nearly compact (FNC).

Proof. Suppose that X is not FED. Then there exists a fuzzy regular open
set � such that Cl�(x) > �(x) for some x 2 X and Cl� 6= 1X . Let x� 2 Cl�
and x� =2 �. For every open q-nbd U of x�, we have U ^ � 6= 0. Therefore
F = fU ^� : U 2 Nq(x�)g forms a �lter-base in Cl�. Since Cl� is S-closed relative

to X , then F
s
! y�, i.e. F s-converges to some point y� 2 Cl�. If y� =2 �, then

y� q �
c = 1� � 2 RC(X), hence 1� � is semi-open and 1� � 2 S(y�). Therefore,

there exists � 2 F such that � 6 1 � �, i.e. � �q �. Since F ! y� in the usual
sense and y� 2 Clu 6 1 � �, therefore every member of F is q-coincident with
1� �, what is impossible. Hence y� 2 �. Almost regularity and � 2 RO(X) imply
that � 2 S(y�), i.e. there exists V 2 RO(X) such that y� q V 6 ClV 6 �. Since
x� =2 �, then x� q ClV c = 1� ClV is an open q-nbd of x�. Since Nq(x�) ! x�,
there exists a q-nbd U of x� such that (U ^ �) 6 1�ClV , i.e. (U ^ �) �q ClV . But

that contradicts the fact that F
s
! y�. Therefore it must be x� = y� , i.e. Cl� = �.

Hence X is FED.

To prove nearly compactness, let U be a maximal �lter-base. S-closedness
implies that U s-converges. Theorem 3.8.(3) implies that U �-converges. Almost
regularity implies that U �-converges. Since X is fuzzy nearly compact (see Theo-
rem 3.9 [13] and Theorem 2.3) i� every maximal �lter-base �-converges, then this
completes the proof.

Corollary 3.5. Let X be an almost regular fts. Then X is S-closed i� X is
FNC and FED i� XS is regular, compact and FED.

Theorem 3.9. Let fts (X; �X) be a fuzzy regular space. Then the following
are equivalent:

(1) X is compact and FED;

(2) X is S-closed;

(3) X is FAC and FED.

Proof. (1) =) (2). See Theorem 3.4.
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(2) =) (3). That S-closed implies FAC, follows directly from the de�nitions.
Using lemma 3.2 we have the proof of (2) =) (3).

(3) =) (1). The proof is straightforward.

Corollary 3.6. (cf. [4, Theorem 3.7; Corollary 3.8]) Let X be fuzzy regular
and extremally disconnected. Then the following is valid:

FC � F�C � S-closed � FAC � FNC:
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