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A STUDY ON GENERALIZED RICCI 2-RECURRENT SPACES

U. C. De and S. Bandyopadhyay

Abstract. The object of the present paper is to study some properties of generalized Ricci
2-recurrent spaces. At first it is proved that every 3-dimensional generalized Ricci 2-recurrent
space is a generalized 2-recurrent space. In section 3, it is shown that for such a space Ricci-
principal invariant is 1/2R. In section 4 we find a necessary condition for such a space to be a
Ricci-recurrent space. Next it is proved that a conformally symmetric Ricci 2-recurrent space is
a generalized 2-recurrent space and a conformally symmetric generalized Ricci 2-recurrent space
with definite metric and zero scalar curvature can not exist. Lastly an example of a generalized
Ricci 2-recurrent space is also constructed.

1. Preliminaries

A non flat Riemanian space V,, (n > 3) is called a generalized 2-recurrent space
[1] if its curvature tensor satisfies

Rhijkim = AmBRhiji,l + Qim Rhijk (1.1)

where a;,, is non-zero and a comma denotes covariant differentiation with respect
to the metric tensor g;;. A, and a;,, are called its vector and tensor of recurrence.
Such a space has been denoted by G(2k,). In generalizing this concept we intend
to study Riemannian space whose Ricci tensor is non-zero and satisfies a relation
of the form

Rijim = )\mRijJ + aim Rij (1.2)

where \,, and a;,, have the same meaning as before. Such a space shall be called a
generalized Ricci 2-recurrent space and will be denoted by G(2R,,). If in particular,
Am = 0, then the space reduces to a Ricci 2-recurrent space introduced by Chaki
and Roychowdhary [2]. In 1952, Patterson [3] introduced a type of Riemannian
space V,, (n > 3) the Ricci tensor of which satisfies R;;, = ApRi; and Ri; # 0
for some non-zero vector A\p. He called such a space Ricci-recurrent and denoted
an n-dimensional space of this kind by R,. Now from (1.1) and (1.2) it is easily
seen that every G(2k,) is a G(2R,,), but the converse is not in general true. Here
we prove that every G(2R3) is a G(2k3). According to Chaki and Gupta [4], an
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n-dimensional (n > 3) Riemannian space is called conformally symmetric if its
Weyl’s conformal curvature tensor

1 R
Cly =Rl — m(ginZ —ginR} + 6y Rij— 6" Ri) + m(éggij — 8" gir)
(1.3)
satisfies
Cihjk,l =0 (1.4)
where R is the scalar curvature.
In the present paper we consider G(2R,,) for n > 3.
2. 3-dimensional generalized Ricci 2-recurrent space
It is known [5] that for a V3
Rhiji = gnkTij — gnjTik + GijThi — GikTh; (2.1)
where
i = (Rij = 4.9i5)- (2.2)
Now for a G(2R3) we have
Rijim = AmRijg + am Rij. (2.3)
Transvecting (2.3) with g%/ we get
Rim = )\mRJ + aim R. (2.4)

From (2.2) we have by virtue of (2.3) and (2.4)
Tijim = Am it — Um i = Rij.im = Am Rt — tim Bij — (Rom — Am R —almR)% =0
OF Tijim = AmTij1 + aim™i;. Therefore from (2.1) it follows that
Rpijeim = AmBhijrg + aim Bhiji.
Thus we can state the following theorem:

THEOREM 1. Every G(2R3) is a G(2k3).

3. Tensor of recurrence and Ricci principal invariant
in a G(2R,,) with non-zero scalar curvature

We see from (2.4) that if R is constant, then R = 0 for a;, # 0. Again from
(2.4)
)\mRJ — AZR,m + ((le - aml)R = RJm — R7ml =0.

Hence if a;,, is symmetric, then A,,, R are co-directional.

From Bianchi identity we get

R p + Rikj — Riju = 0. (3.1)
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Covariant differentiation of (3.1) gives R, .. + Rikjm — Rijrm = 0. Now by
virtue of (1.2)

Rl hm = kmBRij — ajm Rik, + Am(Rij e — Rikj). (3.2)

Trnsvecting (3.2) with g/ and using the formula R}, = TR ; we obtain

1 . A
§R,km = aka - aijiC + 7R,k (33)
whence 1
aiji = 50,ka. (34)

Now by the similar argument as in [2] we get the following theorem:

THEOREM 2. In a G(2R,) with non-zero scalar curvature the tensor of re-
currence i, s not symmetric in general and its rank is less than n. Also apm, is
symmetric if and only if A\, and R are co-directional. Further, for such a space,
one Ricci principal invariant is %R.

4. G(2R,) (R # 0) of definite metric

In this section we consider a G(2R,,) with non-zero scalar curvature for which
y 1
RYR;; = §R2 (4.1)

holds. Then from (4.1) it follows 2RYR;;; = RR,. Differentiating both sides of
the previous equation covariantly, we get

L . 1 1
R??nRijJ + RURij’lm = §R’1R’m + §RR’lm. (42)
But
RY9Rijim = R (aimRij + AmRiji) = am R Rij + A RV R,
1

1 1 1
= ZamR?+ A RR; = =R(aimR + AmR.;) = =RR 1.
2al + 5 ) 5 (al + ,z) 5 N

By virtue of thiS, (42) reduces to R%lRij,l = %R’lR’m. Put Sijk = Rij,k — j\kRij,
where A\, = R ;/R. Then

Siijijk = gmkaf;lRij7k — S\mgmkRiniLk - )\kgmthZRhLm + gmkme\kRini]‘

1 - 1- -
EgmkR7mR7k - g™ X\nRR . + §>\mAkgmkR2 =0. (4.3)

B If the space is of definite metric, then (4.3) gives S;;x = 0, whence R;;r =
ArRij. We can therefore state the following theorem:

THEOREM 3. FEvery G(2Rn)_ of definite metric whose scalar curvature is dif-
ferent from zero and for which RV R;; = %RQ, is an R,.
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5. Conformally symmetric G(2R,,)

It is well known that for a conformally symmetric Riemannian space, it holds
1
2(n—1)
Let us suppose that a G(2R,,) with R # 0, is conformally symmetric. The conformal

curvature tensor can be written in the form

Rijr — Rir; = (R rgij — R jgir)- (5.1)

Chijk = Rhijr — Dhijk (5.2)

where
Dhijr = Thiij — ThiGik + Tij gk — TikGhj, (5.3)

R
i = Rij — ———¢gii | - 5.4
Tij ( T 1)9 ]) (5.4)
Now
Ryijkg — Dhijkg = Chijry = 0. (5.5)
On account of (5.1) and (5.4),
1 1
Tigh = Takg = 35 | Bk = Riny + 503 (B9 = Rorgig)| = 0.

Hence
Tijk = Tik,j- (5.6)
From (5.4) we have as a consequence of (1.2)
Tijkl = QkiTij + N Tij k- (5.7)
Now (5.5) gives
Rhijkim = Dhijk,im - (5.8)
On account of (5.8) and (5.3) we have Ruijkim = GmPBhijk + AmBnijr,i- Also
equations (5.6) and (5.7) give axm;; = a;jm;. Multiplying both sides by ¢* we get
Om; = ajlgklmk where 0 = gklakl.
Now considering a;; is symmetric we obtain

En—Q R 0

OR;; = 5 maij + Smgij' (5.9)
Multiplying the above equation by R¥ we have
OR;;RY = gZ—:iainij + %giﬂ%ij. (5.10)
But multiplying (3.5) by ¢*™ we obtain a;j,R'™ = %RG. Hence (5.10) gives
OR;;RY = % Since R # 0, if # = 0, (5.10) would give a;; = 0. Hence
nR?

6 # 0. Therefore R;; R = . Thus we get

4(n —1)
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THEOREM 4. A conformally symmetric G(2R,,) is a G(2k,) and when the

RQ
tensor of recurrence is symmetric then the length of Ricci tensor is h
n—
Now by covariant differentiation of (5.1) it follows
1
Rijpi — Rig.jt = ————(R.k19ij — Rj19ix)- 5.11
skt = Bt = 50— 1)( k19i5 — B jigin) (5.11)

By virtue of (2.4) and (1.2) the equation (5.11) reduces to the form

1 1
akl (Rij - mRsz) + A < ij k mR,kgiJ) =

1 1
=aj <Rik - ngik> + X\ (Rik,j - mﬁj%k) .

Hence on account of (5.1) we obtain

1 1
o ( Rij = 50—y R9is | = ait ( Rie = 50— Ron ) - 5.12
au( 7T 3m—1) 93) al( k 5(n — 1) gk) ( )
Transvecting (5.12) with R/ and using the relation (3.5),
1
—RR,;, ) = —R Ri, — —Rgir, | -
( -1 ) 2 ( “T2m - g’“)
But it follows from (5. 12) that
1 1
—R i — Ry, =-R|Ri, — —Ry;
( SETOESY g) 2 ( T2 -1) g)
Hence
R, R ! RR; = 1R R; ! R
rilly 2(n — 1) ip | Akl = D) zp2(n — 1) Gip | Qkl-
Therefore
T n 1 2
R”'Rp = 7RR1P — R Gip- (513)

2(n—1) 4(n—1)

Now if R =0, (5.13) reduces to R,;R}, = 0 or R™R,; = 0 (by contraction with
g'?). So, for definite metric R;; = 0, which is not possible. Hence we obtain the
following theorem:

THEOREM 5. A conformally symmetric generalized Ricci 2-recurrent space
with definite metric and zero scalar curvature can not exist.

6. Example of a generalized Ricci 2-recurrent space

For this section let the greek index runs over 2, 3, ..., n — 1 and the latin
index runs over 1, 2, ... , n. We define the metric g in R™, n > 4 by the formula [6]
ds? = Q(dz')? + K,pdx®dx’ + 2dxtdz" (6.1)

where [K,3] is a symmetric and non-singular matrix consisting of constants, and
Q@ is independent of z™.
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The only components of Christoffel symbols Rj;jr, R;j, not identically zero
are those related to

A _ l,aﬁ n\| _ 1 n __1
{11}__5[‘ @5, {11}__2Q'1’ {m}_ Cha

1 1 ..
Riap1 = §Q-aﬂa Ry = —5-’&' BQ.aﬂ

where [K%F)] = [K,5] !
Let Q = Kopz®aPe® where

10 0
0 1 0
[I(aﬁ]_ -------------
00 1

So [K*F] = [K,s]. Now

KagKo‘ﬁ =n-2, Q.af= 2Kag6211, Q.afr =0, K*Q.af=2(n- 2)6%1.
(6.3)
Hence from (6.2) and (6.3) the only non zero components of R;;, Riji, Rijim are

1 1 1
Rii=(m—=2)e*", Riui=2n-2)e*", Ry =4(n—2)e*".

So, R11711 = R1171 + 2Rq1. Hence Riij = (leRij + AmRijJ where

2, forl=m=1, 1, form =1, . .
A, = and \,, = Hence V), is a generalized

0, otherwise,
Ricci 2-recurrent space.

0, otherwise.
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