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CONTINUITY OF THE ESSENTIAL SPECTRUM
IN THE CLASS OF QUASIHYPONORMAL OPERATORS

Slavisa V. Dordevié

Abstract. Let H be a separable Hilbert space. We write o(A) for the spectrum of A €
B(H), 0.,(A) for the Weyl spectrum and o,(A) for the Browder spectrum. Operator A € B(H)
is quasihyponormal if A*(A*A — AA*)A > 0, i.e. ||A* Az|| < ||A%z]|, for every z € H.

1. Introduction

Let H be a complex infinite-dimensional separable Hilbert space and let B(H)
(K(H)) denote a Banach algebra of all bounded operators (the ideal of all compact
operators) on H. If A € B(H), then o(A) denotes the spectrum of A and p(A)
denotes the resolvent set of A. The following sets are well-known semigroups of
semi-Fredholm operators on H:

b, (H)={A€ B(H):R(A) is closed and dimN(A4) < oo}

o (H)={Ae€ B(H):R(A) is closed and dim H/R(A) < o0 }.
The semigroup of Fredholm operators is ®(H) = & (H)N ®_(H). If A is semi-
Fredholm and a(A) = dim N (A) and $(A) = dim H/R(A), then we may define an
index: i(A) = a(A) — B(A). We also consider a class ®o(H) = { A € ®(H) :i(A) =
0} (Weyl operators). For A € B(H), the following familiar spectra are defined

og.(A)={AeC: Hme - I(A—=XNz|| =0} — the approximate spectrum,
rxeH ,||z||=

0.(A)={AeC:A—-\¢ ®(H)} — the Fredholm spectrum,
ow(A)={ e C:A-XN¢g Dy(H)} — the Weyl spectrum, and
op(A) = ﬂ{ 0(A+K): AK =KA,K € K(H)} — the Browder spectrum .
We use 01.(A) (0,.(A)) left (right) essential spectrum of A (that is left (right)
spectrum of 7(A4) in B(H)/K(H)), and 0y.¢(A) = 01 (A) N0, (A4).
Let mpo(A) be the set of all A € C such that A is an isolated point of o(A)
and 0 < dim N (A — X) < oo and let mo(A) be the set of all normal eigenvalues
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of A, that is the set of all isolated points of o(A) for which the corresponding
spectral projection has finite-dimensional range and let 0°(A) = 07..(A) U mo(A).
It is well-known that o,(A) = o (A) \ mo(4) [2, 7].
We say that A obeys Weyl’s theorem [7, 10], if
ow(A) = a(A)\moo(A4).

Let T (A) be the union of all trivial components of the set

(G (ANPZp(I U [ ot p (DI p(A))),
—oo<n<oo
where p¥ L(A) ={A€C:i(A-A)£0}and p” (A)={Ae€C:i(A-N)=n}.
If (7,,) is a sequence of compact subsets of C, then its limit inferior is

liminf 7, = {\ € C: there are \,, € 7, with \,, = A}

n—oo

and its limit superior is
limsup7, = {A € C: there are \,, € 7,, with A\,, = A}.

If liminf, o 7, = limsup,,_, ., 7n, then lim, .. 7, is said to exist and is equal
to this common limit. A mapping p, defined on B(H), whose values are compact
subset of C is said to be upper (lower) semi-continuous at A, provided that if
A, — A then limsup,,_. . p(A,) C p(A) (p(A) C liminf, .. p(A,)). If p is both
upper and lower semi-continuous at A, then it is said to be continuous at A and in
this case lim, o, p(A,) = p(A).

We say that A € B(H) is hyponormal provided that ||A*z| < ||Az]| for all
r € H and A is quasihyponormal, if ||A*Az| < ||A%x| for all x € H. Note
that the Weyl’s theorem is proved for hyponormal and quasihyponormal operators
[6, 7, 10].

2. Results

THEOREM 2.1. Let A € B(H) obeys Weyl’s theorem. Then o, is continuous
at A if and only if o is continuous at A.

Proof. Let oy, is continuous at A € B(H) and let {A,} be a sequence in B(H)
such that A,, — A. Since o is upper semi-continuous [3, 4] we have to show that o is
lower semi-continuous at A, or o(A) C liminf,, . 0(4,). Let A € 6(A4). Then, if
A€ o0y(A) Co(A), wehave A € 0, (A) Climinf, .o 0, (A,) Climinf, . 0(4,).
Suppose that A € 0(A)\o,(A). Since A obeys Weyl’s theorem we have that A €
moo(A), so A is an isolated point of o(A). Now from [9, Theorem 3.26] it follows
that A € liminf,, o o(A,).

Now, let o be continuous at A and let A obeys Weyl’s theorem. Since mo(A) C
moo(A), we have

7I'0(A) n Ue(A) C 7I'()0(A) n Uw(A) = 71'00(14) n (O'(A)\ﬂ'()o(A)) C FOE(A) ,

and so, by [1, Theorem 14.17] o, is continuous at A. m
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COROLLARY 2.2. Let A € B(H) obeys Weyl’s theorem. If o, is continuous at
A then oy, is continuous at A.

Proof. If o, is continuous at A, then by [4, Theorem 5.1.] we have that o
is continuous at A, too. Now, since A obeys Weyl’s theorem, by Theorem 2.1 it
follows that o, is continuous at A. m

LEMMA 2.3. Let A € B(H). If o is continuous at A, then o° is upper semi-
continuous at A.

Proof. Since ¢ is continuous at A, by [3, Corollary 3.2] it follows that
int p?_n(A) = 0. Now, by [5, Theorem 1.3] we have that ¢ is upper semi-
continuous. m

THEOREM 2.4. Let A € B(H). If o and o4, are continuous at A, then oy, is
continuous at A.

Proof. Suppose that o, is not continuous at A. Since o} is upper semi-
continuous at every A € B(H) [2, Lemma 2.1], then we have a sequence of operators
{A,} C B(H) such that

O’b(A) ¢_ llnn_ligf Ub(An) s

i.e. there exsist A € o,(A), € > 0 and nonnegative integer n; such that B(A,€) N
op(A,) = 0, for every n > ny. Since o, is continuous at A we have that A €

op(A) \ 0, (A).

Now, from continuity of o at A we have

A€ op(A) Co(A) Climinfo(4,),

i.e. there exists a nonnegative integer ny such that B(\, e) No(A4,) # 0, for every
n > nz. There exists a A, € B(A,e) No(A4,) such that A\, € d(A4,) \ 0p(4,) =
mo(Ay), ie. A € mo(An) Uore(A,) = 0%(A,), for every n > ng = max{ni,n2}.

Since ¢ is continuous at A, by Lemma 2.3. we have that ¢° is upper semi-
continuous at A. As B(\,€) N a°(A,) # 0, n > ng it follows that

A € limsup a®(A,) C 0%(A) = opre(A) Umg(A) .

Since A ¢ 0,(A), we have that A ¢ 0,..(A), i.e. X € mp(A4) = o(4) \ op(A4).

This contradiction concludes the proof. m

THEOREM 2.5. If A,, A are quasihyponormal operators in B(H) such that
A, — A, then o, (A,) — 0y (A).

Proof. As proved in [3, 7, 10], quasihyponormal operators obeys Weyl’s theo-
rem and so, by [8, Theorem 1] we have that o(A,) — o(A). Now, by Theorem 2.1
we have that o,(4,) — 0, (A). =

COROLLARY 2.6. Let A,, A are quasihyponormal operators in B(H) such that
A, — A. Then op(A,) — op(A).
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Proof. Since A,,, A are quasihyponormal operators, by [8, Theorem 2.] we have

that lim, . 0(A,) = 0(A) and by Theorem 2.5 we have that lim, . 0, (A,) =
0w (A). Now by Theorem 2.4 it follows that lim, .. 05(An) = 0p(A). m
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