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ON NEARLY PARACOMPACT SPACES
AND NEARLY FULL NORMALITY

M. N. Mukherjee and Atasi Debray

Abstract. This paper is a continuation of the study of nearly paracompact spaces, initiated
by Singal and Arya in [5]. After suitably defining the generalized versions of normality and full
normality in our setting, we achieve, as our final objective, an analogue of the celebrated theorem
of A. H. Stone on paracompactness viz. “a Hausdorff topological spaces is paracompact iff it is
fully normal”. Incidentally, in course of the deliberation, we obtain a few extended forms of certain
well known results on paracompactness.

The concept of nearly paracompact spaces was initiated by Singal and Arya
[5]. Although quite a good number of varied forms of paracompactness has been
introduced and studied so far, the most widely studied paracompactness-like notion
is near paracompactness. In addition to [5], one may refer to [1] and [4] for further
descriptions concerning such a concept. In [5], Singal has furnished a comparative
study of near paracompactness vis-a-vis certain other variant forms of paracom-
pactness.

In the present article, our sole purpose is to bring forth a generalized version
of the celebrated theorem of A. H. Stone that in a Hausdorff topological space
paracompactness is equivalent to the full normality of the space. To this end, we
have suitably defined a weaker version of fully normal space, that suits our purpose.
This notion along with a corresponding introduced form of normality is developed
to the extent that we need for achieving our aim. In course of the proceedings,
some general forms of certain results of paracompactness are incidentally obtained.

To make the exposition self-contained, as far as practicable, we clarify certain
prerequisites as follows. By a space X we shall always mean a topological space
(X, 7) in which no separation axiom is presumed, and for a subset A of X, int X
and cl A will respectively denote the interior and closure of A in (X,7). By A
we shall always mean an index set. We recall that a set A in a space X for
which A = intcl A4, is called a regular open set, and complements of such sets are
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known as regular closed sets. It is known that the class of all regular open sets
in a space (X,7) is an open base for a topology on X coarser than 7, called the
semiregularization topology on X, to be denoted by 75 [2]. The members of 75 are
known as ¢-open sets of X and the complements of such sets are called ¢-closed
sets [7]. A cover U of a space X by open (regular open) sets is called an open cover
(regular open cover) of X. For a cover U of a space X and any A C X, the set
S(A,U) is defined by S(A,U) ={U €U : ANU # @ }; in particular, we shall use
the notation S(z,U) when A = {x}. If 4 and V are two covers of a space X, by
U <V, we shall mean, as usual, that I/ is a refinement of V; we shall adopt the
usual notation U* <V (U2 < V) to mean that U is a star refinement (resp. delta
refinement) of V, i.e., if the covering { S(U,U) : U € U } (resp. { S(x,U) : x € X })
refines V. For the well known definitions of locally finite and point finite covers,
and relevant results on paracompactness, one may refer to any standard text book
of general topology (e.g. see Dugundji [3]).

Singal and Arya [6] called a topological space X to be almost regular if for
any regular closed set F' and any point « € X \ F, there exist disjoint open sets
containing F' and z respectively. The notion of near paracompactness was also
initiated by the same authors in the following way:

DEFINITION 1. [5] A topological space X is nearly paracompact if every regular
open cover of X has a locally finite open refinement.

We now introduce the following definition:

DEFINITION 2. A space X is said to be nearly fully normal if for every regular
open cover U of X, there exists an open cover V of X such taht V* < U.

REMARK 3. It is easy to see that a space X is nearly fully normal iff for every
regular open cover U of X, there exists a regular open cover V of X such that
V< U.

THEOREM 4. A space X is nearly fully normal iff every regular open cover of
X has a regular open 6-refinement.

Proof. If X is nearly fully normal, then by Remark 3 and the fact that for any
cover V of X, VA < V*, the requirement is met.

Conversely, for a given regular open cover U of X, there exists a regular open
cover V such that V& < U. Now, for the regular open cover V of X, there is a
regular open cover W of X such that W2 < V. So W < W2 < V and hence
WA < WAL < YPA| Since WA < W* < WA we get the regular open cover W of
X such that W* < U, proving X to be nearly fully normal. m

DEFINITION 5. A space X is said to be nearly normal if for any two disjoint
sets F' and G, one of which is é-closed and the other regular closed, there exist
open sets U, V such that FCU,GCV andUNV =g.

THEOREM 6. Any nearly fully normal space X is nearly normal.

Proof. Let F and G be two disjoint d-closed sets in a nearly fully normal space
X, with F a regular closed set. Then X \ F is regular open while X \ G is -open.
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Then there exists a family { Go : @ € A} of regular open sets in X such that
X\G=U,ep Gar ThusUd = { X\ F,G, : a € A} is a regular open cover of X.
By nearly full normality of X and Theorem 4, there exists a regular open cover 53
of X such that B < U. We consider U = S(F,B) and V = S(G,B). Then U,
V are open sets in X such that 7 C U and G C V. In order to separate F' and
G strongly, we must have U NV = &. If possible, let U NV # @. Then there
exist V1, Vo € B such that ViNF # &, Vo, N F # & and V; NV, # &. Hence
there is p € Vi N V;. Clearly, Vi UV, C S(p, B) showing that S(p,B) N F' # & and
S(p,B)NG # @. Consequently, S(p,B) € X \ F and S(p,B) € X \ G = U,ep Ga,
ie., S(p,B) € G, for all @ € A. This is a contradiction, since B2 < U. Hence
U NV =g, proving the space to be nearly normal. m

In a Hausdorff space every singleton is clearly é-closed. Thus in a Hausdorff
nearly normal space, every regular closed set and a point outside it can be strongly
separated by open sets. This leads us to infer:

COROLLARY 7. A Hausdorff nearly normal space is almost regular.
COROLLARY 8. A Hausdorff nearly fully normal space is almost reqular.
THEOREM 9. A nearly paracompact Hausdorff space is nearly normal.

Proof. We first show that a nearly paracompact Hausdorff space is almost reg-
ular. Let F be a regular closed set and p € X \ F. For each ¢ € F, by Hausdorffness
of X there exist open sets V(¢) and U,(p) containing ¢ and p respectively such that
V(g) N Uy(p) = @, so that p ¢ clV(q). Consequently, ¥V = { X \ F,intclV(q) :
q € F'} becomes a regular open cover of X. By near paracompactness of X, there
exists a locally finite open cover U of X such that &/ < V. Now, the set S(F,U)
(=U, say) is an open set with F C U. Thus it is enough to show that p ¢ U. In
fact, if U" € U is such that U'NF # &, then U’ € X \ F. So as U < V, there exists
q € F such that intclV(q) D U’. Thus clU" C clV(q). Asp ¢ clV(q), p ¢ clU’,
ile,pg U{cddU U e, UNF#a}=cU{U €elU:U' NF # &} (since U is
a locally finite family) = clU.

Next, we show that X is nearly normal. Let F' and G be two disjoint -closed
sets in X with G a regular closed set. Then by almost regularity of X, to each
p € F there corresponds an open set V(p) such that

AV(p) NG = o. (1)

As X'\ F'is 6-open, X \ F' = (J,cp Go, where { G,, : @ € A} is a family of regular
open sets in X. Now, V = {G,,intclV(p): a € A,p € F'} is a regular open cover
of X. By near paracompactness of X, there exists a locally finite open cover U of
X such that & < V. We put U = S(F,U). Then

clU:cl[U{U’EU:U’ﬂF#Q}] =J{aU' U eu,U'nF£a}). (2

Now, UNF# & = U' € X\F =,y Goa = U € Gq, forallae A. Soas
U <V, there exists p € F such that U’ C int cl V(p). Then by (1), clU’ C clV(p).
Thus by (2), clU C X \ G. Consequently, F C U C clU C X \ G, proving the
space to be nearly normal. m
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LeEMMA 10. Let X be a nearly normal space. Then for every point finite reqular
open cover 2 ={ Gy :a €A} of X, there is a regular open cover {V, : a € A} of
X such that c1V, C G4, for each a € A; moreover, V, # & whenever G, # .

Proof. Let X be nearly normal. By Zermelo’s theorem, we can choose a well-
order < on A so that @ = { G, : @ < T } where T is some definite ordinal number.
We shall now define a regular open set V,,, for every a < T such that

X\[U{Vg:ﬂ<a}UU{G7:7>a} CV, CeclV, CGa. (1)

For this, we apply transfinite induction on the ordinal a. We define V; first. We
have, X \ [U{ G, : v > 0}] is a é-closed set in X, contained in Gy (as Q2 is a cover
of X). By near normality, there is a regular open set V, such that X \ [J{G, :
v >0} CVy CeclVy C Go. Suppose that we have already defined Vg, for all
B <a Then {Vg: 8 <a}U{G,:v > a} forms a covering of X. In fact, if
p € X is such that p ¢ G, for all ¥ > «a, by point finiteness of Q there exists the
last ordinal # < « such that p € Gg. If p ¢ Vg for all f' < 8 we have by (1),

pe X\ (U Vs :8 <BYUU{Gp : 8" > B}] C Vs, so that p € V3. Now,
X\ [U{Vg:ﬂ<a}UU{GV:v>a}] C G
By near normality of X, there exists a regular open set V, such that
X\ [U{V@:ﬁ<a}UU{G7:’y>a}} CV,CeclV, CG,.

Thus we can construct V, satisfying (1), for each a < T', i.e., V, is a regular open set
satisfying cl V,, C G,, for each a < T. Finally, we are to show that {V, : a < T}
covers X. Choose p € X. The covering 2 of X being point finite, there is the last
ordinal number § < T such that p € Gg. Then p ¢ U{G, : v > B8}. Now, if
p ¢ Vo, for each B/ < 3, we have p € X\ [[U{ G, : 7> B} UIU{ Vi : ' < B1]] C
Vs. Thus p € V3. Consequently, we get a regular open cover { V, : @ € A} with
clV, CG,, foreacha € A. m

LeMMA 11. Every regular open locally finite covering of a nearly normal space
has a regular open delta refinement.

Proof. Suppose V = {V, : @« € A} is a locally finite regular open cover
of a nearly normal space X. We construct, by Lemma 10, a regular open cover
W ={W, :a € A} such that clW, CV,, for all @« € A. Let A’ be a subset of the
index set A. We define

P(A') = [ﬂ{va:ae/\'}} n [ﬂ{X\cha:aeA\A’} .

Let us prove that P(A’) is a regular open set. Since V is locally finite, W ( =
{clW :W € W}) is also so. Then

(X \cdWa:ae A\NA =X\ J{cdW,:ae A\ A}
:X\cl[U{Wa:aeA\A’}].
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On the other hand, as V is locally finite, (J{V, : @ € A’} = &, if A’ is infinite,
and is regular open if A’ is finite. Thus P(A’) is a regular open set, for each subset
A" of A. For any p € X, p € P(A’) whenever A' = {a € A : p € clW, }. Thus
P ={P(A"): A" C A}is aregular open cover of X. To prove P2 <V, we consider
a given point p of X. Since W is a covering of X, p € Wy for some € A. Let
p € P(A'), then in view of the definition of P(A’), we know that 3 € A’; because
if 6 € A\A, then p ¢ X\ clWz D P(A'), a contradiction as p € P(A’). Thus
P(A’) C V. As the inclusion holds for all P(A') which contains p, S(p,P) C V3,
proving that P2 < V. m

As alast step towards our prerequisites for attaining our desired goal we recall
the following result from [5].

LEMMA 12. An almost reqular space X is nearly paracompact iff each reqular
open cover of X has an open o-locally finite refinement.

With the deliberations so far, we are now set to prove the desired analogue of
the celebrated Stone’s theorem as follows.

THEOREM 13. A Hausdorff space X is nearly paracompact iff it is nearly fully
normal.

Proof. Let us first assume that X is Hausdorff and nearly paracompact. Then
by Theorem 9, X is nearly normal. If ¢/ is any regular open cover of X, then U
has a regular open locally finite refinement V. By Lemma 11, there exists a regular
open delta refinement W of V, i.e., WA < V. Then W2 < U. Then by Theorem 4,
X is nearly fully normal.

Conversely, let X be nearly fully normal Hausdorff space. Let = {G, : a €
I} (I being an index set) be a regular open cover of X. We define a sequence of
regular open covers {Q;} of X taking Qo = Q and 2,41 to be a regular open star
refinement of Q,, for n =0,1,2,... . Let Go,n = {x € X : there is a regular open
set V containing x such that S(V,Q,) C G, }, for every « € T and n =1,2,... .
We show that for each n, the family {Gq,, : @ € I} is an open cover of X, which
is a refinement of 2. We apply induction on n to prove that {Gq, : a € I}
is a covering of X for each n € N (N denoting the set of all natural numbers).
Let € X. Then for some V! € Q, z € V1. Since Q} < Q, there is G, € Q
such that S(V!, Q) C G,. Hence by definition of G, we have x € G, 1. Thus
{Ga1:a€l}isacoverof X.

Suppose that {Gyn-1 : @ € I} is a cover of X. Then for any z € X,
there is a regular open set V' containing x such that S(V,Q,_1) C G,, for some
a €1,ie, xz € Gop_1. But Qis a cover of X and hence x € V", for some
Vr e Q. As QF < Q,_4, there is T" ! € Q,_; such that S(V™,Q,) C T L.
Since * € S(V™,Q,), we have x € T" ! € Q, ;. Hence x € VNT" 1 ie.,
VAT ! #@. Thus T" 1 C S(V,Qp_1) C Ga, so that S(V",Q,) CT" ! C G,.
Thus € Ga,, and hence {Gan : @ € I} is a cover of X, for each n € N. We
prove that if © € Go,, and y ¢ Gu nt1, then there does not exist any G € Q41
such that z,y € G. (1)
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For every G € Q,,41, there exists H € Q,,, such that S(G,Q,11) C H (since
V. <) Thusz € GNGapn = H C S(2,Q,) C Gu. In fact, as v € G,
x € S(G,Q+1) and hence = € H, where H € Q,, and hence H C S(z,Q,). Again
z € Gg,n implies that there exists some open neighbourhood V' of z such that
S(V,Q,) C G,. Asx € V, all those members of ,, which contain x have nonempty
intersection with V' and hence each is contained in S(V,,,); then S(x,Q,) C Ga..
Now, as S(G, Qp+1) C H, for some H € Q,,, and H C G, we obtain S(G,Q,4+1) C
H. Now for z € G, as G is a regular open set containing  with S(G,Q,+1) C G,
we have z € Gq nt1 so that G C Gy 1. Thus y ¢ G.

Let us now suppose that the set I is well-ordered by the relation ‘<’ and let

Hzn=Ggn\ cl[ U Ga’n_|_1]7 for every 8 € I and each n € N.
alf

For any pair of distinct elements v,n € I, we have either v < n or v > n and
correspondingly we have Hy,, C X \ Gynt1 or Hy,, C X \ G, nt1. Now, if
x € H,, and y € H,, where v # n (suppose v < n), there is no set G € Q11
which would contain both z and y. Indeed, x € H,, means x € G, ,. Again
y € H,, CX\G, i1 means that y ¢ G, ,+1. Then by (1), there isno G € Q,,44
which contains both x and y. Thus we see that for every x € X, there is some
G € Q41 such that € G and G intersects at most one Hy, ,, for a fixed n € N
(Hg,n's being mutually disjoint). Hence { Hy n : a € I } is a discrete family of open
sets, forn =1,2,... .

Finally we shall show that { Hy,, : @« € I,n € N} is a cover of X. Let y € X,
and let o, is the first index such that y € G, » (that { Gy, : @ € I} is a cover
of X, for each n € N, has already been proved). Taking inf{ @, : n € N} = a(y)
(say), we obtain y € Go(y),n, for some n € N. So for a < a(y) < any2,y ¢ Gant2-
For a < a(y), let + € Gy n+1. Then there does not exist any G € Q2,15 such that
and y both belong to G. So the collection of sets in 2,12 which contain y cannot
intersect (J{ Gan+1 @ @ < a(y)}. Now, Hoy)n = Gay)n \ AUaca(y) Ganil
and y € Go(y),n- But since S(y, Qny2) N [U{Gant1 t a < ay)}] = 9,y ¢
AUa<a(y) Gant1]- Thus y € Hy(y),n- Hence every regular open cover of X has
an open o-discrete refinement. Every o-discrete refinement being o-locally finite,
it follows by virtue of Corollary 8 and Lemma 12 that X is nearly paracompact. m
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