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ON NEARLY PARACOMPACT SPACES

AND NEARLY FULL NORMALITY

M. N. Mukherjee and Atasi Debray

Abstract. This paper is a continuation of the study of nearly paracompact spaces, initiated
by Singal and Arya in [5]. After suitably de�ning the generalized versions of normality and full
normality in our setting, we achieve, as our �nal objective, an analogue of the celebrated theorem
of A. H. Stone on paracompactness viz. \a Hausdor� topological spaces is paracompact i� it is
fully normal". Incidentally, in course of the deliberation, we obtain a few extended forms of certain
well known results on paracompactness.

The concept of nearly paracompact spaces was initiated by Singal and Arya
[5]. Although quite a good number of varied forms of paracompactness has been
introduced and studied so far, the most widely studied paracompactness-like notion
is near paracompactness. In addition to [5], one may refer to [1] and [4] for further
descriptions concerning such a concept. In [5], Singal has furnished a comparative
study of near paracompactness vis-a-vis certain other variant forms of paracom-
pactness.

In the present article, our sole purpose is to bring forth a generalized version
of the celebrated theorem of A. H. Stone that in a Hausdor� topological space
paracompactness is equivalent to the full normality of the space. To this end, we
have suitably de�ned a weaker version of fully normal space, that suits our purpose.
This notion along with a corresponding introduced form of normality is developed
to the extent that we need for achieving our aim. In course of the proceedings,
some general forms of certain results of paracompactness are incidentally obtained.

To make the exposition self-contained, as far as practicable, we clarify certain
prerequisites as follows. By a space X we shall always mean a topological space
(X; �) in which no separation axiom is presumed, and for a subset A of X , intX
and clA will respectively denote the interior and closure of A in (X; �). By �
we shall always mean an index set. We recall that a set A in a space X for
which A = int clA, is called a regular open set, and complements of such sets are
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known as regular closed sets. It is known that the class of all regular open sets
in a space (X; �) is an open base for a topology on X coarser than � , called the
semiregularization topology on X , to be denoted by �s [2]. The members of �s are
known as �-open sets of X and the complements of such sets are called �-closed
sets [7]. A cover U of a space X by open (regular open) sets is called an open cover
(regular open cover) of X . For a cover U of a space X and any A � X , the set
S(A;U) is de�ned by S(A;U) = fU 2 U : A \ U 6= ? g; in particular, we shall use
the notation S(x;U) when A = fxg. If U and V are two covers of a space X , by
U < V , we shall mean, as usual, that U is a re�nement of V ; we shall adopt the
usual notation U� < V (U� < V) to mean that U is a star re�nement (resp. delta
re�nement) of V , i.e., if the covering fS(U;U) : U 2 U g (resp. fS(x;U) : x 2 X g)
re�nes V . For the well known de�nitions of locally �nite and point �nite covers,
and relevant results on paracompactness, one may refer to any standard text book
of general topology (e.g. see Dugundji [3]).

Singal and Arya [6] called a topological space X to be almost regular if for
any regular closed set F and any point x 2 X n F , there exist disjoint open sets
containing F and x respectively. The notion of near paracompactness was also
initiated by the same authors in the following way:

Definition 1. [5] A topological spaceX is nearly paracompact if every regular
open cover of X has a locally �nite open re�nement.

We now introduce the following de�nition:

Definition 2. A space X is said to be nearly fully normal if for every regular
open cover U of X , there exists an open cover V of X such taht V� < U .

Remark 3. It is easy to see that a space X is nearly fully normal i� for every
regular open cover U of X , there exists a regular open cover V of X such that
V� < U .

Theorem 4. A space X is nearly fully normal i� every regular open cover of

X has a regular open �-re�nement.

Proof. If X is nearly fully normal, then by Remark 3 and the fact that for any
cover V of X , V� < V�, the requirement is met.

Conversely, for a given regular open cover U of X , there exists a regular open
cover V such that V� < U . Now, for the regular open cover V of X , there is a
regular open cover W of X such that W� < V . So W < W� < V and hence
W� <W�� < V�. Since W� <W� <W��, we get the regular open cover W of
X such that W� < U , proving X to be nearly fully normal.

Definition 5. A space X is said to be nearly normal if for any two disjoint
sets F and G, one of which is �-closed and the other regular closed, there exist
open sets U , V such that F � U , G � V and U \ V = ?.

Theorem 6. Any nearly fully normal space X is nearly normal.

Proof. Let F and G be two disjoint �-closed sets in a nearly fully normal space
X , with F a regular closed set. Then X n F is regular open while X nG is �-open.
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Then there exists a family fG� : � 2 � g of regular open sets in X such that
X n G =

S
�2�G�. Thus U = fX n F;G� : � 2 � g is a regular open cover of X .

By nearly full normality of X and Theorem 4, there exists a regular open cover B
of X such that B� < U . We consider U = S(F;B) and V = S(G;B). Then U ,
V are open sets in X such that F � U and G � V . In order to separate F and
G strongly, we must have U \ V = ?. If possible, let U \ V 6= ?. Then there
exist V1, V2 2 B such that V1 \ F 6= ?, V2 \ F 6= ? and V1 \ V2 6= ?. Hence
there is p 2 V1 \ V2. Clearly, V1 [ V2 � S(p;B) showing that S(p;B) \ F 6= ? and
S(p;B)\G 6= ?. Consequently, S(p;B) * X nF and S(p;B) * X nG =

S
�2�G�,

i.e., S(p;B) * G�, for all � 2 �. This is a contradiction, since B� < U . Hence
U \ V = ?, proving the space to be nearly normal.

In a Hausdor� space every singleton is clearly �-closed. Thus in a Hausdor�
nearly normal space, every regular closed set and a point outside it can be strongly
separated by open sets. This leads us to infer:

Corollary 7. A Hausdor� nearly normal space is almost regular.

Corollary 8. A Hausdor� nearly fully normal space is almost regular.

Theorem 9. A nearly paracompact Hausdor� space is nearly normal.

Proof. We �rst show that a nearly paracompact Hausdor� space is almost reg-
ular. Let F be a regular closed set and p 2 X nF . For each q 2 F , by Hausdor�ness
of X there exist open sets V (q) and Uq(p) containing q and p respectively such that
V (q) \ Uq(p) = ?, so that p =2 clV (q). Consequently, V = fX n F; int clV (q) :
q 2 F g becomes a regular open cover of X . By near paracompactness of X , there
exists a locally �nite open cover U of X such that U < V . Now, the set S(F;U)
( = U , say) is an open set with F � U . Thus it is enough to show that p =2 U . In
fact, if U 0 2 U is such that U 0 \F 6= ?, then U 0 * X nF . So as U < V , there exists
q 2 F such that int clV (q) � U 0. Thus clU 0 � clV (q). As p =2 clV (q), p =2 clU 0,
i.e., p =2

S
f clU 0 : U 0 2 U ; U 0 \ F 6= ? g = cl[

S
fU 0 2 U : U 0 \ F 6= ? g] (since U is

a locally �nite family) = clU .

Next, we show that X is nearly normal. Let F and G be two disjoint �-closed
sets in X with G a regular closed set. Then by almost regularity of X , to each
p 2 F there corresponds an open set V (p) such that

clV (p) \G = ?: (1)

As X n F is �-open, X n F =
S
�2�G�, where fG� : � 2 � g is a family of regular

open sets in X . Now, V = fG�; int clV (p) : � 2 �; p 2 F g is a regular open cover
of X . By near paracompactness of X , there exists a locally �nite open cover U of
X such that U < V . We put U = S(F;U). Then

clU = cl
h[

fU 0 2 U : U 0 \ F 6= ? g
i
=
[
f clU 0 : U 0 2 U ; U 0 \ F 6= ? g: (2)

Now, U 0 \F 6= ? =) U 0 * X nF =
S
�2�G� =) U 0 * G�, for all � 2 �. So as

U < V , there exists p 2 F such that U 0 � int clV (p). Then by (1), clU 0 � clV (p).
Thus by (2), clU � X n G. Consequently, F � U � clU � X n G, proving the
space to be nearly normal.
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Lemma 10. Let X be a nearly normal space. Then for every point �nite regular

open cover 
 = fG� : � 2 � g of X, there is a regular open cover fV� : � 2 � g of

X such that clV� � G�, for each � 2 �; moreover, V� 6= ? whenever G� 6= ?.

Proof. Let X be nearly normal. By Zermelo's theorem, we can choose a well-
order < on � so that 
 = fG� : � < T g where T is some de�nite ordinal number.
We shall now de�ne a regular open set V�, for every � < T such that

X n
h[

fV� : � < � g [
[
fG
 : 
 > � g

i
� V� � clV� � G�: (1)

For this, we apply trans�nite induction on the ordinal �. We de�ne V0 �rst. We
have, X n [

S
fG
 : 
 > 0 g] is a �-closed set in X , contained in G0 (as 
 is a cover

of X). By near normality, there is a regular open set V0 such that X n [
S
fG
 :


 > 0 g] � V0 � clV0 � G0. Suppose that we have already de�ned V� , for all
� < �. Then fV� : � < � g [ fG
 : 
 > � g forms a covering of X . In fact, if
p 2 X is such that p =2 G
 , for all 
 > �, by point �niteness of 
 there exists the
last ordinal � < � such that p 2 G� . If p =2 V�0 for all �0 < � we have by (1),
p 2 X n [

S
fV�0 : �0 < � g [

S
fG�00 : �00 > � g] � V� , so that p 2 V� . Now,

X n
h[

fV� : � < � g [
[
fG
 : 
 > � g

i
� G�:

By near normality of X , there exists a regular open set V� such that

X n
h[

fV� : � < � g [
[
fG
 : 
 > � g

i
� V� � clV� � G�:

Thus we can construct V� satisfying (1), for each � < T , i.e., V� is a regular open set
satisfying clV� � G�, for each � < T . Finally, we are to show that fV� : � < T g
covers X . Choose p 2 X . The covering 
 of X being point �nite, there is the last
ordinal number � < T such that p 2 G� . Then p =2

S
fG
 : 
 > � g. Now, if

p =2 V�0 , for each �0 < �, we have p 2 X n [[
S
fG
 : 
 > � g][ [

S
fV�0 : �0 < � g]] �

V� . Thus p 2 V� . Consequently, we get a regular open cover fV� : � 2 � g with
clV� � G�, for each � 2 �.

Lemma 11. Every regular open locally �nite covering of a nearly normal space

has a regular open delta re�nement.

Proof. Suppose V = fV� : � 2 � g is a locally �nite regular open cover
of a nearly normal space X . We construct, by Lemma 10, a regular open cover
W = fW� : � 2 � g such that clW� � V�, for all � 2 �. Let �0 be a subset of the
index set �. We de�ne

P (�0) =
h\

fV� : � 2 �0 g
i
\
h\

fX n clW� : � 2 � n �0 g
i
:

Let us prove that P (�0) is a regular open set. Since V is locally �nite, W ( =
f clW :W 2 W g) is also so. Then

\
fX n clW� : � 2 � n �0 g = X n

[
f clW� : � 2 � n �0 g

= X n cl
h[

fW� : � 2 � n �0 g
i
:
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On the other hand, as V is locally �nite,
T
fV� : � 2 �0 g = ?, if �0 is in�nite,

and is regular open if �0 is �nite. Thus P (�0) is a regular open set, for each subset
�0 of �. For any p 2 X , p 2 P (�0) whenever �0 = f� 2 � : p 2 clW� g. Thus
P = fP (�0) : �0 � � g is a regular open cover of X . To prove P� < V , we consider
a given point p of X . Since W is a covering of X , p 2 W� for some � 2 �. Let
p 2 P (�0), then in view of the de�nition of P (�0), we know that � 2 �0; because
if � 2 � n �0, then p =2 X n clW� � P (�0), a contradiction as p 2 P (�0). Thus
P (�0) � V� . As the inclusion holds for all P (�0) which contains p, S(p;P) � V� ,
proving that P� < V .

As a last step towards our prerequisites for attaining our desired goal we recall
the following result from [5].

Lemma 12. An almost regular space X is nearly paracompact i� each regular

open cover of X has an open �-locally �nite re�nement.

With the deliberations so far, we are now set to prove the desired analogue of
the celebrated Stone's theorem as follows.

Theorem 13. A Hausdor� space X is nearly paracompact i� it is nearly fully

normal.

Proof. Let us �rst assume that X is Hausdor� and nearly paracompact. Then
by Theorem 9, X is nearly normal. If U is any regular open cover of X , then U
has a regular open locally �nite re�nement V . By Lemma 11, there exists a regular
open delta re�nement W of V , i.e., W� < V . Then W� < U . Then by Theorem 4,
X is nearly fully normal.

Conversely, let X be nearly fully normal Hausdor� space. Let 
 = fG� : � 2
I g (I being an index set) be a regular open cover of X . We de�ne a sequence of
regular open covers f
ig of X taking 
0 = 
 and 
n+1 to be a regular open star
re�nement of 
n for n = 0; 1; 2; . . . . Let G�;n = fx 2 X : there is a regular open
set V containing x such that S(V;
n) � G� g, for every � 2 I and n = 1; 2; . . . .
We show that for each n, the family fG�;n : � 2 I g is an open cover of X , which
is a re�nement of 
. We apply induction on n to prove that fG�;n : � 2 I g
is a covering of X for each n 2 N (N denoting the set of all natural numbers).
Let x 2 X . Then for some V 1 2 
1, x 2 V 1. Since 
�

1 < 
, there is G� 2 

such that S(V 1;
1) � G�. Hence by de�nition of G�;1 we have x 2 G�;1. Thus
fG�;1 : � 2 I g is a cover of X .

Suppose that fG�;n�1 : � 2 I g is a cover of X . Then for any x 2 X ,
there is a regular open set V containing x such that S(V;
n�1) � G�, for some
� 2 I , i.e., x 2 G�;n�1. But 
 is a cover of X and hence x 2 V n, for some
V n 2 
. As 
�

n < 
n�1, there is Tn�1 2 
n�1 such that S(V n;
n) � Tn�1.
Since x 2 S(V n;
n), we have x 2 Tn�1 2 
n�1. Hence x 2 V \ Tn�1, i.e.,
V \ Tn�1 6= ?. Thus Tn�1 � S(V;
n�1) � G�, so that S(V n;
n) � Tn�1 � G�.
Thus x 2 G�;n and hence fG�;n : � 2 I g is a cover of X , for each n 2 N. We
prove that if x 2 G�;n and y =2 G�;n+1, then there does not exist any G 2 
n+1

such that x; y 2 G. (1)
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For every G 2 
n+1, there exists H 2 
n, such that S(G;
n+1) � H (since

�

n+1 < 
n). Thus x 2 G \ G�;n =) H � S(x;
n) � G�. In fact, as x 2 G,
x 2 S(G;
n+1) and hence x 2 H , where H 2 
n and hence H � S(x;
n). Again
x 2 G�;n implies that there exists some open neighbourhood V of x such that
S(V;
n) � G�. As x 2 V , all those members of 
n which contain x have nonempty
intersection with V and hence each is contained in S(V;
n); then S(x;
n) � G�.
Now, as S(G;
n+1) � H , for some H 2 
n, and H � G�, we obtain S(G;
n+1) �
H . Now for z 2 G, as G is a regular open set containing x with S(G;
n+1) � G�,
we have z 2 G�;n+1 so that G � G�;n+1. Thus y =2 G.

Let us now suppose that the set I is well-ordered by the relation `<' and let

H�;n = G�;n n cl
h [
�<�

G�;n+1

i
; for every � 2 I and each n 2 N.

For any pair of distinct elements 
; � 2 I , we have either 
 < � or 
 > � and
correspondingly we have H�;n � X n G
;n+1 or H
;n � X n G�;n+1. Now, if
x 2 H
;n and y 2 H�;n where 
 6= � (suppose 
 < �), there is no set G 2 
n+1

which would contain both x and y. Indeed, x 2 H
;n means x 2 G
;n. Again
y 2 H�;n � X nG
;n+1 means that y =2 G
;n+1. Then by (1), there is no G 2 
n+1

which contains both x and y. Thus we see that for every x 2 X , there is some
G 2 
n+1 such that x 2 G and G intersects at most one H�;n, for a �xed n 2 N
(H�;n's being mutually disjoint). Hence fH�;n : � 2 I g is a discrete family of open
sets, for n = 1; 2; . . . .

Finally we shall show that fH�;n : � 2 I; n 2 N g is a cover of X . Let y 2 X ,
and let �n is the �rst index such that y 2 G�n;n (that fG�;n : � 2 I g is a cover
of X , for each n 2 N, has already been proved). Taking inff�n : n 2 N g = �(y)
(say), we obtain y 2 G�(y);n, for some n 2 N. So for � < �(y) 6 �n+2, y =2 G�;n+2.
For � < �(y), let x 2 G�;n+1. Then there does not exist any G 2 
n+2 such that x
and y both belong to G. So the collection of sets in 
n+2 which contain y cannot
intersect

S
fG�;n+1 : � < �(y) g. Now, H�(y);n = G�(y);n n cl[

S
�<�(y)G�;n+1]

and y 2 G�(y);n. But since S(y;
n+2) \ [
S
fG�;n+1 : � < �(y) g] = ?, y =2

cl[
S
�<�(y)G�;n+1]. Thus y 2 H�(y);n. Hence every regular open cover of X has

an open �-discrete re�nement. Every �-discrete re�nement being �-locally �nite,
it follows by virtue of Corollary 8 and Lemma 12 that X is nearly paracompact.
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