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ON CB-COMPACT, COUNTABLY CB-COMPACT AND

CB-LINDEL�OF SPACES

Anita Sondore

Abstract. By a (countably) CB-compact space we call a topological space each cover
(respectively each countable cover) of which by open sets with compact boundaries contains a
�nite subcover. By a CB-Lindel�of space we call a topological space each cover of which by open
sets with compact boundaries contains a countable subcover. Basic properties of these spaces and
relations of these spaces to some other classes of topological spaces are studied.

Introduction

Comapactnes is one of the most fundamental topological properties. There-
fore it is quite natural that a very vast literature is devoted to the study of var-
ious generalizations of compactness. These generalizations proceed from di�erent
characterizations of compactness and are being developed into essentially di�erent
directions (cf. e.g. [1], [6], [3], [4]).

One of these directions relies on restricting open covers in the de�nition of
compactness by allowing only special open sets to appear in these covers. The
starting point of this direction was probably the paper [12] where Clp-compact
spaces were introduced (i.e. spaces each clopen cover of which contains a �nite
subcover; note that [12] uses a di�erent terminology). Later Clp-compact spaces
were studied and used in a series of papers, see e.g. [5], [7], [8], [11]. Developing
the idea of Clp-compactness, in [9] we introduced the property of FB-compactness
(or �nite-boundary compactness) by calling a space FB-compact whenever each its
open cover, all sets in which have �nite boundaries, has a �nite subcover. The
subject of this paper are CB-compact (or compact-boundary compact) spaces, i.e.
spaces every cover of which consisting of open sets with compact boundaries has a
�nite subcover. The property of CB-compactness �rst appears in [11]. The main
aim of our paper is to develop the origins of the theory of CB-compactness. Inciden-
tally we introduce the concept of CB-Hausdor�ness, which for CB-compactness can
play a role similar to the role of Hausdor�ness in theory of compactness. Besides,
in the paper we consider CB-analogues of properties of countable compactness and
Lindel�ofness.
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1. General properties of CB-compact spaces

Definition 1.1. A topological space is called CB-compact if every its cover, all

elements of which are open sets with compact boundaries, contains a �nite subcover.

The next scheme shows the interdependence between some compactness type
properties which are de�ned by open covers with sets satisfying certain properties
of its boundaries:

Compactness =) CB-compactness =) FB-compactness =) Clp-compactness.

Sometimes it can be useful to compare CB-compactness with the property of
CCL-compactness where we call a space CCL-compact if every its cover by open
sets with compact closures has a �nite subcover:

CB-compactness =) CCL-compactness.

That the converse in these conclusions related to CB-situation is not true is
demonsatrated by the following examples.

Example 1.2. Let X be an uncountable set and let � = fX;?; X nA : A �
X; jAj 6 @0 g. Obviuosly the space X is CB-compact, but fails to be compact.

Example 1.3. Hilbert space X = R@0 is CB-compact and it is not compact.

Let U � R@0 and the boundary @U is compact. Then we can prove that
int(X n U) = ?, i.e. U = U [ @U = R@0 . Therefore obviously the Hilbert space

X = R@0 is CB-compact.

Example 1.4. The Euclidean space Rn, n > 2, is FB-compct, but fails to be
a CB-compact space.

Example 1.5. The rational numbers space Q is CCL-compact, but fails to
be a CB-compact space.

The next two statements show when the properties of CB-compactness and
compactness become equivalent.

Recall that a space X is called RIM-compact, if for each point x and each open
neighbourhood Ux there exists an open neighbourhood Vx � Ux whose boundary
is compact.

Proposition 1.6. An RIM-compact space is CB-compact i� it is compact.

Corollary 1.7. A zero-dimensional space is CB-compact i� it is compact.

From the resemblance of the de�nitions of compactness and CB-compactness
one can expect a certain analogy in the behaviour of these properties.

First we have to point out the di�erence between a CB-compact subspace and
a CB-compact subset. A subset M of a space X is called a CB-compact subset

if every cover of M in X by open sets with compact boundaries contains a �nite
subcover. On the other hand a subset M of a space X is called a CB-compact
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subspace if every cover of M by open sets with compact boundaries in M contains
a �nite subcover.

Proposition 1.8. If M is a CB-compact subspace of a space X, then M is

also a CB-compact subset of X.

Proof of this proposition easily follows if we use the relation @XA � @M (A\M)
whenever M � X and A � X , see e.g. Lemma 1.11 from [9].

Lemma 1.9. If U �M � X, then @XU � @MU [ @XM .

Proof. Take an arbitrary point x 2 @XU , then for every its neighbourhood Ox:
(1) Ox \ U 6= ? and (2) Ox \ (X n U) 6= ?. From (2) it follows that either
Ox \ (M nU) 6= ? or Ox \ (X nM) 6= ?. Now taking into account (1) we conclude
that either x 2 @MU or x 2 @XM . Therefore x 2 @MU [ @XM .

Proposition 1.10. If a topological space X is CB-compact and M is its closed

subset with compact boundary, then M is a CB-compact subspace of X, too.

Proof. Let U = fUi : i 2 I g be an open cover with compact boundaries @MUi
in the subspace M of the space X and let ~Ui = Ui [ (X n M). Then each ~Ui
is an open subset in X . Further we observe that @X ~Ui � @XUi [ @X(X nM) �
@MUi [ @XM [ @X(X nM) (the last inclusion follows from Lemma 1.9). Since the
boundary of the set M coincides with the boundary of its complement X nM , the

set @X(X nM) is compact. Therefore @X ~Ui is compact as a �nite union of compact

sets and hence the system f ~Ui : i 2 I g is an open cover with compact boundaries
of this space X . Now, the conclusion follows easily in the standard way.

Proposition 1.11. A topological space is CB-compact i� every system of its

closed subsets with compact boundaries which has the �nite intersection property

has a non-empty intersection.

Proof can be done in the standard way.

Since the boundary of the intersection of two sets is contained in the union of
boundaries of these sets and the �nite union of compact sets is compact, one can
easily get the following corollary of the previous proposition.

Corollary 1.12. A topological space is CB-compact i� every system of its

non-empty closed subsets with compact boundaries which is invariant under �nite

intersections has a non-empty intersection.

Proposition 1.13. If a space X is CB-compact and Y is the image of X
under a continuous mapping f : X ! Y such that f�1(K) is a compact subset in

X whenever K is compact in Y , then Y is CB-compact, too.

Proof. Since f�1(K) n f�1(K) � f�1(K) n f�1(K) = f�1(K nK) for every
open subset K of Y , the preimage of each open set K with compact boundary is
also an open set with compact boundary. Therefore the proof can be easily done
in the standard way.
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Turning now to the question of preserving CB-compactness by preimages, we
�rst state the following, probably well-known lemma.

Lemma 1.14. If a continuous mapping f : X ! Y is open and closed, then

@f(M) � f(@M)|in other words, the boundary of the image of a set M � X is

contained in the image of its boundary.

Proof. Since f is an open and closed mapping, it holds @f(M) = f(M) n
int f(M) = f(M)n int f(M) � f(M)nf(intM) � f(M n intM) = f(@M) for every
subset M of X .

Proposition 1.15. If a space Y is CB-compact and a mapping f : X ! Y
has the following properties: f is an open and closed mapping and for every point

y from Y the preimage f�1(y) is a CB-compact subset of X, then the space X is

CB-compact, too.

Proof. Let U = fUi : i 2 I g be a system of closed subsets of X with compact
boundaries which is invariant under �nite intersections. We have to prove thatT
U 6= ?.

Let f(U) = f f(Ui) : Ui 2 U g. Since f is open and closed, from the previous
lemma it follows that @f(Ui) � f(@Ui) for every subset Ui 2 U . Therefore f(U)
is a system of closed subsets of Y with compact boundaries and obviously f(U)
has the �nite intersection property. Therefore

T
f(U) 6= ?. Choose some point

y0 2
T
f(U) and let K = f�1(y0). It is clear that for every Ui 2 U , Ui\K is a non-

empty closed subset of K and @(Ui \K) � @Ui \K, and therefore also @(Ui \K)
is compact in K. Since U is invariant under �nite intersections, it follows that
fUi\K : Ui 2 U g has the �nite intersection property and since K is CB-compact,
we conclude that

T
U � (

T
U) \K 6= ?.

Proposition 1.16. A �nite union of CB-compact subsets of a given space X
is a CB-compact subset.

Proposition 1.17. A direct sum X =
L

i2I Xi of non-empty spaces Xi is

CB-compact i� all Xi, i 2 I, are CB-compact and the set I is �nite.

Proofs are obvious and therefore omitted.

Construction 1.18. For every � the quotient hedgehog J� is a CB-compact
space. Generalizing this example, we can construct new CB-compact spaces from
old ones. Let X�, � 2 A (A is a �nite set) be CB-compact spaces and assume that
in each space X�, � 2 A there exists a point x�� 2 X� having a neighbourhood U�
with a compact boundary (in case there are several such points we �x one of them).
In the direct sum

L
X� we de�ne the equivalence relation by setting x�� � x�� for

all �; � 2 A. The resulting quotient space Z =
L

X�= � is CB-compact.

Now we shall introduce the property of CB-Hausdor�ness which in the context
of CB-compact spaces plays a role similar to the role of Hausdor�ness in the classic
theory of compactness.



On CB-compact, countably CB-compact and CB-Lindel�of spaces 129

Definition 1.19. A topological space X is called CB-Hausdor� if for any two
di�erent points x and y there exist disjoint open neighbourhoods Ax and By with
compact boundaries.

Obviously,

Clp-Hausdor� =) FB-Hausdor� =) CB-Hausdor� =) Hausdor�

CCl-Hausdor� =) CB-Hausdor�

That the converse in these conclusions related to CB-Hausdorfness is not true
is showed by the next examples.

Example 1.20. The Hilbert space R@0 (see 1.3) is Hausdor�, but is not CB-
Hausdor�, while the Euclidean space Rn for n > 2 is CB-Hausdor�, but is not
FB-Hausdor�.

Example 1.21. The space Q of rational numbers is CB-Hausdor�, but is not
CCl-Hausdor�. (We call a space CCl-Hausdor� if for any two di�erent points there
exist disjoint open neighbourhoods with compact closures.)

The proof of the next proposition can be easily done in the standard way.

Proposition 1.22. A CB-compact subset of a CB-Hausdor� space is closed.

The fundamental property of compactness is multiplicativity. Our next aim is
to study whether CB-compactness is preserved by products. We do not know the
answer in the general case. However, it is true in some special situations.

Proposition 1.23. The product of a CB-compact space and a compact space

is CB-compact.

Proof. LetX be a CB-compact and Y be a compact space. Since the projection
pX : X � Y ! X along the compact space Y is an open and closed mapping and
for every point x 2 X the preimage p�1

X (x) = fxg � Y � X � Y is a CB-compact
subset, the conclusion follows from Proposition 1.14.

Proposition 1.24. (see Proposition 2.9 in [11]) Let W be an open subset

of the product X � Y such that the boundary @W is compact. If the projection

pX : X � Y ! X is clopen, it is pX(@W ) � @(pX(W )).

Lemma 1.25. (see Lemma 2.10 in [11]) Let V be a regularly closed subset of

the product X�Y and pX(@ intV ) � @(pX(int V )), then also pX(@V ) � @(pX(V )).

We can conclude now:

Corollary 1.26. If V is a regularly closed subset of the product X � Y such

that the boundary @V is compact and the projection pX : X � Y ! X is clopen,

then pX(@V ) � @(pX(V )).

The next fact was mentioned in [11]. Here we present the proof of this fact
more completely.
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Proposition 1.27. If X and Y are CB-compact spaces and the projection

pX : X � Y ! X is clopen, then the product X � Y is CB-compact.

Proof. Let V = fVi : i 2 I g be a family of closed subsets of X � Y with
compact boundaries which is invariant under �nite intersections. To show CB-
compactness of the product it is su�cient to prove that

T
V 6= ? (Proposition

1.12).

For every Vi 2 V let V 0
i = intVi and let V 0 = fV 0

i : Vi 2 V g. Obviously
@V 0

i = @intVi � @ intVi � @Vi and hence the boundaries of all V 0
i 2 V 0 are also

compact.

Consider the two possible cases:

1) V 0 is not closed under �nite intersections. Since Vi = intVi[@Vi = V 0
i [@Vi,

this means that there exists V0 2 V such that @V0 intersects every Vi 2 V . Taking
into account that @V0 is compact, we conclude that

T
V � (

T
V ) \ @V0 6= ?.

2) Let now V 0 be closed under �nite intersections, and consider the family

of sets A = f pX(V 0
i ) : V 0

i 2 V 0 g. Then obviously A has the �nite intersection
property and sets from A are closed. The sets V 0

i 2 V 0 for every i 2 I are regularly
closed in X � Y and @V 0

i is compact. Then from Corollary 1.26 it follows that
pX(@V

0
i ) � @(pX(V

0
i )), but this means that also @(pX(V

0
i )) is compact as a closed

subset of a compact subspace. Since @(pX(V 0
i )) � @(pX(V

0
i )), the set @(pX(V

0
i )) is

also compact. Thus all sets of A are closed and have compact boundaries. Hence,
by Proposition 1.12 it follows that

T
A 6= ?. Then there exists a point a 2

T
A. For

every V 0
i 2 V 0 the intersection (fag�Y )\V 0

i 6= ? because V 0 is closed under �nite
intersections and all sets V 0

i are regularly closed and have compact boundaries.
Thus

T
V �

T
V 0 � (fag � Y ) \ V 0

i 6= ? and therefore X � Y is a CB-compact
space.

2. Countably CB-compact spaces

Definition 2.1. A topological space is called countably CB-compact if every
its countable cover, all elements of which are open sets with compact boundaries,
contains a �nite subcover.

Obviously,

CB-compactness =) countable CB-compactness

Countable compactness =) countable CB-compactness

=) countable FB-compactness =) countable Clp-compactness:

Example 2.2. The Hilbert space R@0 (see 1.3) is a countably CB-compact
space which is not countably compact.

Example 2.3. Since in the realm of zero-dimensional spaces CB-compactness
(respectively, countable CB-compactness) is equivalent to compactness (respec-
tively, to countable compactness), every zero-dimensional countably compact non-
compact space presents also an example of a countably CB-compact space which
fails to be CB-compact. One of such spaces is the spaceW0 of all countable ordinals.
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But for spaces of countable weight, the converse is also true.

Proposition 2.4. If w(X) 6 @0, then X is a CB-compact space i� X is

countably CB-compact.

Proof. Let U = fUi : i 2 I g be a cover of X all elements of which are open sets
with compact boundaries. Since the space X is second countable, for every i 2 I
and every x 2 Ui there exists a neighbourhood Vx from the countable base Bx such
that x 2 Vx � Ui. Clearly, the system V = fVx : Vx 2 Bx g is �nite or countable,
i.e. V = fVx1 ; . . . ; Vxn ; . . . g and taking the corresponding sets Ui1 � Vx1 , etc., we
select at most a countable subcovering from the cover U . Since X is a countable
CB-compact space, there exists a �nite subcover of X . So X is a CB-compact
space.

The converse conclusion is obvious.

In a similar way as CB-compactness, obviously also countable CB-compactness
has characterizations by systems of closed sets with �nite intersection properties.

Proposition 2.5. A topological space is countably CB-compact i� every count-

able system of its closed subsets with compact boundaries which has the �nite in-

tersection property has a non-empty intersection.

Corollary 2.6. A topological space is countably CB-compact i� every count-

able system of its non-empty closed subsets with compact boundaries which is in-

variant under �nite intersections has a non-empty intersection.

Proposition 2.7. If a topological space X is countably CB-compact and M
is its closed subset with compact boundary, then M is a countably CB-compact

subspace of X.

Proof is similar to that of Proposition 1.10.

Proposition 2.8. Let X be a countably CB-compact space and Y be the image

of X under a continuous mapping f : X ! Y such that f�1(K) is a compact subset

in X whenever K is compact in Y . Then Y is counatbly CB-compact, too.

Proof is similar to that of Proposition 1.13.

Proposition 2.9. Let Y be a countably CB-compact space and a mapping

f : X ! Y has the following properties: f is open and closed and for every point

y from Y the preimage f�1(y) is a CB-compact subset of X. Then the space X is

countably CB-compact, too.

Proof is similar to that of Proposition 1.15.

With respect to products the behaviour of countably CB-compact spaces has
analogies with the CB-compactness. In particular, patterned after the proof of
Proposition 1.23 one can easily prove the next

Proposition 2.10. The product of a countably CB-compact and a compact

space is countably CB-compact.
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3. CB-Lindel�of spaces

Definition 3.1. A topological space is called CB-Lindel�of if every its cover,
all elements of which are open sets with compact boundaries, contains a countable
subcover.

Obviously,

CB-compactness =) CB-Lindel�ofness

Lindel�ofness =) CB-Lindel�ofness =) FB-Lindel�ofness =) Clp-Lindel�ofness:

Every countably CB-compact CB-Lindel�of space is CB-compact:

The space constructed in [2], 3.12.18 is not CB-Lindel�of (this space is not
CB-compact and also is not countably CB-compact, but remains CB-Hausdor�.)

Example 3.2. The Euclidean space Rn gives an example of a CB-Lindel�of
space, which fails to be CB-compact.

Example 3.3. Let X be an uncountable set, p 2 X and the topology � =
f?; A : p 2 Ag. Obviously the space (X; �) ic CB-Lindel�of, but fails to be a Lindel�of
space.

Proposition 3.4. A RIM-compact space is CB-Lindel�of i� it is Lindel�of.

Corollary 3.5. A zero-dimensional space is CB-Lindel�of i� it is Lindel�of.

From the resemblance of the de�nitions of Lindel�of and CB-Lindel�of spaces
one can expect a certain analogy in the behaviour of these properties.

Proposition 3.6. If a topological space X is CB-Lindel�of and M is its closed

subset with compact boundary, then M is a CB-Lindel�of subspace of X, too.

Proposition 3.7. If a space X is CB-Lindel�of and Y is the image of X
under a continuous mapping f : X ! Y such that f�1(K) is a compact subset in

X whenever K is compact in Y , then Y is CB-Lindel�of, too.

Proposition 3.8. A direct sum X =
L

i2I Xi of non-empty spaces Xi is

CB-Lindel�of i� all Xi, i 2 I, are CB-Lindel�of and the set I is countable.

Proposition 3.9. If a space Y is CB-Lindel�of and a mapping f : X ! Y
has the following properties: f is an open and closed mapping and for every point

y from Y the preimage f�1(y) is a CB-compact subset of X, then the space X is

CB-Lindel�of, too.

Proofs of Propositions 3.6{3.9 are similar to proofs of 1.10, 1.13, 1.17, 1.15
respectively and therefore are omitted.

There is also a characterization of CB-Lindel�ofness by countable intersection
property.

Proposition 3.10. A topological space is CB-Lindel�of i� every system of its

closed subsets with compact boundaries which has the countable intersection property

has a non-empty intersection.
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Proof is straightforward.

Example 3.11. The Sorgenfrey line Rb is CB-Lindel�of, but Rb �Rb is not
Clp-Lindel�of and then also it is not CB-Lindel�of.

Proposition 3.12. The product of a CB-Lindel�of space and a compact space

is CB-Lindel�of.

Proof can be done in a similar manner as the proof of Proposition 1.23.

REFERENCES

[1] Aleksandrov, P. S., Uryson, P. S., Memuar o kompaktnyh topologiqeskih pros-
transtvah, Nauka, Moskva, 1971.

[2] Engelking, R., General Topology, PWN, Warszava, 1977.

[3] Enegleking, R., Mrowka, S., On E-compact spaces, Bull. Acad. Pol. Sci. Ser. Math. 6, 1958.

[4] Katetov, M., �Uber H-abgeschlossene und bikompakte R�aume, �Casopis P�est. Math. Fys. 69
(1940), 36{49.

[5] Musaev, D. K., Pasynkov, B. A., O svo�stvah kompaktnosti i polnoty topolo-
giqeskih prostranstv i nepreryvnyh otobra�eni�. Taxkent, 1994.

[6] Smirnov, �. M., O topologiqeskih prostranstvah, kompaktnyh v dannom otrezke
mownoste�, Izv. AN SSSR, ser. matem. 14 (1950), 155{178.

[7] Sondore, A., �Sostak, A., On clp-compact and countably clp-compact spaces, Acta Univ.
Latviensis 595 (1994), 123{143.

[8] Sondore, A., On clp-Lindel�of and clp-paracompact spaces, Acta Univ. Latviensis 595 (1994),
143{156.

[9] Sondore, A., On kb-compact spaces, Acta Univ. Latviensis 606 (1997), 61{72.

[10] Sondore, A., CB-kompaktas, sanumur�ejami CB-kompaktas un CB-Lindelofa telpas, 2. Latvi-
jas matem�atikas konferences t�ezes, 1997, 64{65.

[11] Stepr�ans, J., �Sostak, A., Restricted compactness properties and their preservation under

products, General Topology Appl. (submitted).

[12] �Sostak, A.,On a class of spaces containing all bicompact and all connected spaces, In: General
Topology and its Relations to Modern Analysis and Algebra, IV, Proc. Fourth Prague Topol.
Symp., 1976, vol. B, 445{451.

(received 20.05.1998.)

Department of Mathematical Analysis, Daugavpils Pedagogical University, Daugavpils, LV{5401,
Latvia


