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SEGMENTS OF EXPONENTIAL SERIES
AND REGULARLY VARYING SEQUENCES

Slavko Simié

Abstract. The task of this paper is to investigate asymptotic behavior of segments of
exponential series defined as

Ta(z):= > C—n:v", AeRT, z— oo,

n<az Nl

where (cn)nen belongs to the set of regularly varying sequences in Karamata sense of arbitrary
index. Precise results are obtained.

Introduction

Karamata’s class R, of regularly varying functions with index a € R consists
of all functions a(z) representable in the form a(z) = z*l(x), where I(z) is from
the class of so-called slowly varying functions, i.e. defined on positive part of real

axis, positive, measurable and satisfying lim,_, ll((sf)) =1, for each s > 0.

According to [3], we could treat regularly varying sequnece (¢, ) of index « as
generated from some a € Ry, i.e. ¢, =n®l(n), n € N.

After seventy years, Karamat’s theory is very well developed and found appli-
cations in different parts of analysis. An excellent survey of results could be found
in [1] or [5].

For this article we are motivated by papers [2] and [6]. In [2] the authors
proved, by probabilistic methods, the following

PROPOSITION 1. If a bounded sequence (c,) behaves regularly with index —8,
8 >0, then

oo

c
exp(—z) 3 —a ~cp), @ — 0o
n=0 T

In [6] we extend this proposition to the following
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PROPOSITION 2. If expP,(z) = > o7 anx™, where Py(z) = bya? + ---;
b, > 0, is a polynomial with (eventually) non-negative coefficients, then

exp(—Pp(x)) 3= cnanz™ ~ (pbyp)P cipny, x—00; co=1;
n=0

for any regularly varying sequence (cy,) of an arbitrary index 3 € R.

Here we are going to show similar (and even more precise) asymptotic relations
take place for segments of exponential series cited above.

Results

At the beginning we shall formulate a rather global proposition, showing how
the structure of a given power series segment influence the behaviour of another
one which involves regularly varying sequences. Namely, let us define

S\ z)= > apa”, an =20, n€N;
n<An(z)

where n(z) increases to infinity with z, and an operator T acting on S:

TS\ z):= Y. cpanz™, n €N,
n<An(z)

where (¢, )nen is a regularly varying sequence of index «a € R.

THEOREM A. If there exist f,g1,92: Rt — R*Y, by: (0,1) = RT, by: (1,00) —
R*, and

lim II;@S) 0, i=12, (a1)
such that
S\ z) O(e t1r(Ma1(@)), 0<A<1, .
f(x) B { A+ O(e*b2(>\)gz(m))’ A> 1, r—o00, AeRT, (A2)
then
M:{ o(Cln(2)])s 0< A<, e
@) Acp(zy (1 +0(1)), A>1,

Proof. We shall use the following well-known properties of regularly varying
functions ([5], pp. 19, 20; [1], p. 52):

For a > 0,
S1:supt®L(t) = y*L(y)(1 + o(1));  inf t*L(t) = y*L(y)(1 + o(1)), y — o0;
i<y 2Y

Sy« fnf tTL(t) =y~ L(y)(1 + o(1)); sup tTL(t) =y~ *L(y)(1 + o(1)), y — oo;

S3: Clny] ~ CIA[Y]] ~ /\aC[y], Yy — 00, AE R+, a€R.
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In the sequel we consider a sequence (¢,) generated by some regularly varying
function z*L(z), a € R, i.e.

Cn = TLQL(TL), neN; co=1 Cly] = [y]aL([y])
Let o and A (@ € R, 0 < A < 1) be fixed numbers; then

TSA\z) 1 n \*' nL(n) N
ey @)~ @) E( ([n<w>]> ([W)]L([n(x)]))w

L n a—l nL(n) n
S F@) ([n@c)]) A @) pm ™

(
_ 1 |a+1 [An(z)]L([An(z)]) —b1(N)g1(z)

7y 0@l )0< (@) ([ (=)]) ) Ote )
= O(n(a) “I*1e=1 91 ®) = O(exp(~by(Nga (1)) <1 o <1gn<(g§)>)
= 0(1), Tr — 00

Hence, the first assertion of Theorem A is proved.
For the second one, let A and ¢ (A > 1, 0 < e < min(1/2,A — 1)) be fixed. We
get
TS\ x)
Cln(2)) f (@)
_ 1 ( + Z + Z >ancnx”
W@\ Thne)  (menie)ntirents)  (Lren(a)en<in()
=T + Ty +Ts.
According to the former argument (A =1—¢ < 1),
T, = o(1), T — 00. (A3)

Analogously,

1 Cn
T3 < —— sup < ) anx™
f(-’]?) n<An(z) \Cln(z)] (1+E)n(w)2<n§)\n(z)
1

= —O(n(x)*HY( S\, z) - S(1 + ¢,z
f(x)(() SN, z) = 5( )
= O(n(2)'*1*1)O(exp(—ga(x) min(bo(1 + €), b5(N)))) = o(1), = — oo.
(A4)
To estimate Ty, suppose for the moment that index « of (¢, ) is positive. Then,
since 0 < £ < 1/2, using properties S; and S3, we obtain:

SUP  Cn = C[(14)n(x)](1 + 0(1)) = ¢lnz) (1 +€)*(1 + o(1))
n<(14¢)n(z)

= Cln(2))(1 +€0(1) + o(1)), T — 00;

inf n = —e)n(z 1+ [n(z 1—e)%1 1
>y A=l (L +0(1)) = Cpn) (1 —e)*(1+o(1))

= (n(a))(1 +€0(1) +0(1)), = — oo.



56 S. Simié

Therefore,
1
T — sup Cn Z anz"
f(fll')cn(z) n<(1+e)n(z) (1—&)n(e)<n<(1+e)n(c)
1
= m(l +e0(1)4+0(1))(S(1+¢,2) — S(1 —¢,2))
=(14e0(1)+0(1))(A+0(1))=A+c0(1)+0(1), z— o0,
(A5)
and, similarly,
1
> —— inf cn - (S(14+e,2)—S1—¢,z
> f((L’)C[n(z)] n>(1l—e)n(z) ( ( ) ( )>
=A+:0(1) +o(1), T — 0. (A6)

Since the constants in O(1) do not depend on ¢ and & can be arbitrarily small,
from (A5) and (A6) we conclude that T ~ A, £ — oo; this, together with (A3)
and (A4), gives the proof of Theorem A for o > 0.

For a < 0 we deduce the proof similarly, using properties So and Ss.

If & = 0, note that (nL(n)) is of index 1, hence

1 1
To= Z — -nL(n)a,x"

(1—5)n(z)<n<(1+s)n(z) n

S A= om@] w1l Fan@IA +o1),

and .
m[(l —e)n(z)](A + o(1)),

which shows that in this case also T ~ A, £ — 00, and the proof is over. m

T >

Investigation of possible relationship between S(A,z), n(x) and f(z) satisfying
conditions of Theorem A is the subject of our next article. Here we just show that
the class of such functions is not empty, i.e. applying results of Theorem A we prove
the following

THEOREM B1l. For any regularly varying sequence (¢n)neN, co = 1, of arbi-
trary index o € R,

O(C[z]), 0<A<],
e Y e~ 30, A=1, x — 00.

Cle] A>1,

In the neighbourhood of A =1 we prove more precisely:
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THEOREM B2.

z" 1 1
e = E Cn—F ~ (— + — Erf(b/x/i)) Clz], T — 00,
|
n<z+h(z) - 2 \/7_1-
where h(z) := by/Z(1+0(1)), z — 00; b € R; Exfy := [} e~ dt.

Proof. According to the premises from Theorem A, the proof of cited theorems
k
depends on asymptotic behaviour of the sum ), T M= n(x) — oo. Therefore,
we derive its integral representation which is more easy to estimate.

ok pntl n\ k! pnt! n\ [ ik
swa= £ 5 =50 2 (e =5 2 () [ e

ie. ot poo
S(n,z) = e 14 t)"™ dt. (B0)
n! Jg
For n = [Az] we obtain
n+l n, n n
e =2 ~ 2 _eninz—nluntn—s _ T —a(Zln 2H172) z o0 (B1)
n! 2mn 2mn
But
)\_l:)‘x_1<ﬁ:M<)‘_$:)\7
x x x x x

ie. 2=X—2 6¢€0,1). Therefore,

o 1
E1nﬁ+1—ﬁ:A1nA+1—,\——1n,\+o(—2>, & — oo,
T T T T T

ie. ((B1))
n+1
e’ xn' = O(y/z e~ (AInA+1=Nz) n=[], MeRT, z—o00. (B2

Since In(1 +1t) <t,t € R, for 0 < A <1, n = [\z], we get

~TH1 4 )" dt / —(@=n) gt = ~ .
/0 e T 1+t)"dt < | e e BV T — 00

Along with (B2) this gives the estimate

wk

e *S([Ax],z) =€ >

— = 0(e- (MmN A€ (0,1), @ — 0. (B3)
k<)z k!

For [ > 1, change of variable 1 + ¢t — t gives

oo o0 e !
/ e L+t dt = e / e~ dt = € </ _/ )e_mtn dt = e (I + L),
0 1 0 0
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and, obviously, I; =

|Is] = <€ ), which, together with (B0) and (B2)
gives r

n+1 ’
eTS(Aa],z) = 1+ 0(e* M=) e (1), zoo0.  (Bd)
Note that b(A) := Aln A — A + 1 is non-negative and convex on A € (0,+00),
b(0+) =1, b(1) = 0, b(A) > 0 for A # 1, and
L1 -X2, xe(0,1),
bA) > { f( 2 ) (0,1)
5111 )\, AE (1,+OO)
Comparing (B3) and (B4) with assertions from Theorem A, we see that conditions

(A1), (A2) are satisfied with

1—A)? In* A
f@) =, n@) = gi(@) = @) =2, ) = T oy =2 4,
from which follows the validity of the first and the third assertion from Theorem B1.
To prove Theorem B2, chnage variable in (B0): 1+t — 2(1 + ﬁ) We get:

gl oo N\" _ Jmttnin(ls -t
e *S(n,x) = v — -e_z/ e "t (—) e~ Vrttnn(+ 50 gy
z  n JA(Z—1) x

— _nnefn </ / —(\/Et—nln(l—i—ﬁ)) dt. (B5)
T

Denote the first integral in (B5) by J; and the second by J» and let
g(n,t) :=+/nt—nln 1+— , t>0, neN.
vn
From the facts:

I: g(n,t) is monotone increasing on n.

Proof. 0< [TV (Vs - Zo)2ds = (s — 1) = s PV = gl (m,t);

2s
IL: lim,, o0 g(n,t) = %, te R;
ITI: For n = [z + h(x)] follows /n(£ —1) — —b, x — o0;
using Lebesgue’s theorem of dominated convergence, we have:

J — / e_t2/2 dt = \/E; (B6)
0 2
0 . b/\V2 ,
Jp — / e U 2dt =2 / et dt =2 Erf(b/Vv/?2). (B7)
—b 0

Since
v n"e " —
n!

from (B5), (B6), (B7) and Theorem A, the assertion of Theorem B2 follows.

Putting b = 0 we obtain the sedond proposition from Theorem Bl. m

n — oo,

5~
3
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