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SIMULTANEOUS APPROXIMATION AND CHEBYSHEV
CENTRES IN METRIC SPACES

T. D. Narang

Abstract. The problem of best simultaneous approximation is studied in convex metric
spaces.

Let A be a subset of a metric space (X,d). For each z € X, the distance
from z to A is defined by d(z,A) = inf{d(z,a) : a € A}. An element ap € A
satisfying d(x,ap) = d(z,A) is called a best approximant to z in A. If a set
of elements B is given in X, one might like to approximate all the elements of
B simultaneously by a single element of A. This type of problem arises when a
function being approximated is not known precisely, but is known to belong to a set.
Several mathematicians have studied this problem of simultaneous approximation
in normed linear spaces. We study this problem in metric spaces.

Let K be a subset of a metric space (X,d). Given any bounded subset F' of
X, define
6(F,K) = inf d(y, ).
(F, K) = inf sup (y, )
An element k* € K is said to be a best simultaneous approximation (b.s.a.) to F'
if sup,ecp d(y, k*) = 6(F, K).
C. B. Dunham, J. B. Diaz and H. W. McLaughlin (see [6]) have considered
the problem of best simultaneous approximation in the following case: X = C|a, b],
K a non-empty subset of X and F' = {fi, fo}. Goel, Holland, Nasim and Sahney
[3] studied the problem when X is a normed linear space, K any subset of X and
F = {z1,22} C X. Using the same procedure as in [3], it is possible to study the
problem when F' = {z1,%2,...,zy}. Holland, Sahney and Tzimbalario [6] studied
the problem when F' is a compact subset of a normed linear space. In this paper,
we study this problem in convex metric spaces. For this we recall a few definitions.

A bounded subset F' of a metric space (X, d) is said to be remotal with respect
to a subset K of X if for each k € K there exists a point fo € F farthest from k,
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ie. d(k, fo) = d(k, f) for all f € F. It is easy to see that compact subsets F' of X
satisfy this property.
Let (X,d) be a metric space and I = [0,1] be the closed unit interval. The

continuous mapping W: X x X x I — X is said to be a convex structure on X [17]
ifforall z,ye X, e[

d(u, W(z,y,A)) < Ad(u,z) + (1 — N)d(u,y)

for all w € X. The metric space (X, d) together with a convex structure is called a
convex metric spaces [17].

A subset K of a convex metric space (X,d) is said to be conver [17] if
W(z,y,A) € K whenever z,y € K and A € I. This notion of convexity is closely
related to that given by K. Menger (see [7]).

A convex metric spaces (X,d) is said to be strictly convezr [7] if for every
z,y € X and r > 0, d(u,z) < 7, d(u,y) < r imply d(u, W(z,y,\)) < r unless
T =y, where u is arbitrary but fixed point of X.

We show that the problem of b.s.a. is equivalent to the problem of minimizing
certain functional. For this we prove a lemma.

LEMMA 1. Let K be any subset of a metric space (X,d) and F a bounded
subset of X. Then the functional ¢: K — R defined by

¢(k) = sup d(f, k)
feF

1S continuous.

Proof. Let € > 0 be given. For any f € F and k, k' € K we have d(f,k) <
d(f,k") +d(k', k) and so
sup d(f, k) < sup d(f, k') + d(K', k)
feF feF
Le. p(k) — ¢(K') < d(K', k).
Interchanging k and k', we get ¢p(k') — ¢(k) < d(k, k') and so |¢p(k) — ¢p(k")| <
d(k,k"). Therefore, if d(k, k') < e then |¢p(k) — ¢(k')| < € and so ¢ is continuous. m
Note. In normed linear spaces this lemma was proved in [6].

If there exists a k* € K such that ¢(k*) = infrcx ¢(k) then k* € K is a b.s.a.
to F. So the problem of b.s.a. reduces to the problem of minimizing the functional
¢ on K and so we have

THEOREM 1. Let F be a bounded subset of a metric space (X,d) and K a
subset of X such that the continuous functional ¢: K — R defined by ¢(k) =
SUPfe g d(f, k) attains its infimum at some point of K then there always exists a
b.s.a. in K to F.

Since for compact sets K and for sets K which are approximatively compact
with respect to F' (i.e. any sequence (k,) in K satisfying supscp d(kn, f) = 0(F, K)
is compact in K), we can find k* € K such that ¢(k*) = infrcx ¢(k), we have
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COROLLARY 1. Let K be a compact subset of a metric space (X,d) and F be
any bounded subset of X. Then there exists a b.s.a. in K to F.

COROLLARY 2. [4] If F is a bounded subset of a metric space (X,d) and K is
approzimatively compact with respect to F' then there exists a b.s.a. in K to F.

The following result which generalizes Lemma 3 of [6], deals with the convexity
of the set of best simultaneous appoximants.

LEMMA 2. Let K be a convex subset of a conver metric space (X,d) and F a
bounded subset of X. If kt, k3 € K are b.s.a. to F then W (ki, k3, ) is also a b.s.a.
in K to F for every A € I.

Proof. Since ki,k; € K are b.s.a. to F,

sup d(f7 kf) = 6(Fa K) = sup d(fa k;)
fEF FEF
For any f € F, consider d(f, W (kf,k3,))) < M(f,kF) + (1 — Nd(f,k3). This
implies
sup d(f: W(kfa k;: /\)) < A sup d(f: k;) + (1 - )‘) sup d(f7 k;)
FeF feF feF
= )\(S(F,K) + (1 - )\)(S(F,K) = 5(F5K) < sup d(faW(kIak;a)‘))
feF
as W (ki, k3, ) € K by the convexity of K. Therefore, sup;c - d(f, W (k{, k3,)) =
0(F, K), proving thereby that W (k;, k3, ) is a b.s.a. in K to F for every A. m
The following result deals with the uniqueness of b.s.a.

THEOREM 2. Let K be a convex subset of a strictly convex metric space (X, d)
and F be a subset of X which is remotal w.r.t. K. Then there exists at most one
b.s.a. in K to F'.

Proof. Suppose ki, k3, ki # ki are two b.s.a. in K to the set F, i.e.
SupfeF d(f,k’f) = 5(F5K) = SuprF d(fa k;) By Lemma 25 W(kfak;aA) € K
is also a b.s.a. to F, i.e. d(f,W(ki,k5,))) = §(F,K) for every A € I. Let A € I
be arbitrary. Keep it fixed. Since F' is remotal w.r.t. K, there exists an element
f* € F such that

d(f*, W(ki, k3, A)) = 6(F, K). (1)
Now d(f*, ki) < 6(F,K) and d(f*,k3) < §(F,K) and since the space is strictly
convex, we have d(f*, W (k},k3,)\)) < §(F, K) unless kf = k3. This contradicts (1)
and hence the uniqueness. m

Combining Theorems 1 and 2 we have

THEOREM 3. Let K be a conver subset of a strictly convex metric space (X, d)
and F a subset of X which is remotal w.r.t. K. If the continuous functional ¢: K —
R defined by ¢(k) = supscp d(f, k) attains its infimum on K then there exists a
unique b.s.a. in K to F.
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Since the functional ¢ attains its infimum when K is compact subset of a
metric space (see [10]) or K is approximatively compact w.r.t. a bounded subset F’
of a metric space (see [4]) or K is weakly compact subset of a normed linear space
(see [13]) or K is boundedly sequentially weakly compact subset of a normed linear
space (see [15]) or K is a reflexive subspace of a normed linear space (see [1]), we
have

COROLLARY 1. Let K be compact convex subset of a strictly conver metric
space (X,d) and F a subset of X which is remotal w.r.t. K then there exists a
unique b.s.a. in K to F.

COROLLARY 2. Let F be a bounded subset of a strictly convex metric space
(X,d), K a convex subset of X which is apporimatively compact w.r.t. F' and F is
remotal w.r.t. K then there exists a unique b.s.a. in K to F.

COROLLARY 3. Let K be a weakly compact convex subset of a strictly convex
normed linear space X and F a subset of X which is remotal w.r.t. K then there
exists a unique b.s.a. in K to F.

COROLLARY 4. If X is a strictly convex normed linear space, K is boundedly
weakly sequentially compact convexr subset of X and F a subset of X which is
remotal w.r.t. K then there exists a unique b.s.a. in K to F.

COROLLARY 5. Let K be a reflexive subspace of a strictly convex normed linear
space X and F a subset of X which is remotal w.r.t. K then there exists a unique
b.s.a. in K to F'.

Corollary 1 generalizes the best simultaneous approximation theorem of [10],
Corollary 2 generalizes Theorem 3 of [5], Corollary 3 generalizes Theorem 1 of [13],
Corollary 4 contains Theorem 1 of [15] and Corollary 5 generalizes Theorem 1 of [1].

Since a uniformly convex Banach space is strictly convex and reflexive and a
bounded closed convex subset of a reflexive space is weakly compact, Corollary 3
gives the following

COROLLARY 6. Let K be a bounded closed convex subset of a uniformly convex
Banach space X and F o subset of X which is remotal w.r.t. K then there exists a
unique b.s.a. to F' from the elements of K.

Since a bounded closed, convex subset of a reflexive Banach space is weakly
compact, Corollary 3 gives the following

COROLLARY 7. If X is a strictly convex and reflexive Banach space, K is
bounded, closed and convez, and F is a subset of X which is remotal w.r.t. K then
there exists a unique b.s.a. in K to F'.

Since a finite dimensional normed linear space is boundedly weakly sequentially
compact, Corollary 4 gives the following generalization of Theorem 1 of [6].
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COROLLARY 8. Let K be a finite-dimmnesional subspace of a strictly convex
normed linear space X and F a subset of X which is remotal w.r.t. K then there
exists a unique b.s.a. in K to F.

Analogous to the problem of best simultaneous approximation, the following
problem of simultaneous furthest points was considered in [8].

Given any bounded subset F' and a subset K of a metric space (X, d), define
D(F,K) = inf d(f,k).
(F,K) sup iof (f, k)

An element f* € F is said to be a simultaneous furthest point to the set K if
D(F,K) =infrex d(f*, k) i.e. f* is farthest from K among the elements of F'.

The problem is the same as that of deviation of F' from K which in normed
linear spaces was considered by V. M. Tihomirov (cf. [16], p. 160). Such an f* € F
is also called extremal with respect to K.

In particular case when K = {k}, the extremal elements f* € F' are nothing
else but the elements of F' which are farthest from k& among the elements of the set
F,ie. d(f*,k) =supscp d(f, k).

The following solution to the simultaneous furthest point problem was given
in [8].

THEOREM 4. Let F' be a compact subset of a metric space (X,d). Then given
any subset K of X, there exists a simultaneous furthest point in F to the set K.

This theorem can be formulated sowewhat stronger, i.e. under slighlty weaker
assumptions. Let F' be a bounded subset of a metric space (X,d). Then given
any subset K of X, there exists a simultaneous furthest point in F' to the set K if
the function 9: F — R defined by ¥(f) = d(f, K) attains its supremum at some
f* € F. Tts proof runs on the same lines as in [8].

Since the function ¥: F' — R defined by ¢ (f) = d(f, K) attains its supremum
at a point of F if F is nearly compact with respect to K (i.e. any sequence (f,) in
F such that d(f,, K) — D(F, K) is compact in F), we get

THEOREM 5. [5] If K is a subset of a metric space (X,d) and F is a subset of
X and is nearly compact with respect to K then there exists a simultaneous furthest
point in F' to the set K.

Many authors have studied relative Chebyshev centres in normed linear spaces
(see [14]). This concept is closely related to the b.s.a. and was first introduced in
1962 by A. L. Garkavi [2]. We take up this study in metric spaces.

Let M be a subset of a metric space (X, d) and B a bounded subset of X. The
Chebyshev radius of B with respect to M is defined as

rady(B) = niréfu?‘égd(f’m)'
The set of all elements x € M such that

sup d(f,z) = rady(B)
feMm
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is denoted by Cent s (B) and its members, if they exist, are called relative Chebyshev
centres of B w.r.t. M. They are the solutions of the simultaneous approximation
problem. In case M = X we write Centy(B) = Cent(B) and call it the set
of Chebyshev centres of B. When B is a singleton, say {f}, then rady(B) =
infenr d(f,m) = dist(f, M) and Centpr(B) = {x € M : d(f,z) = dist(f, M) } is
the set of best approximations to f in M.

The elements of Cent(B) best represent the set B as if z is any particular
element of X chosen to represent the set B, then error incurred will be sup{ d(f, z) :
f € B} and zg € X best represents the set B when this error is minimum.

We say that M has the relative Chebyshev centre property in X if Centy,(B) #
( for all non-empty bounded sets B in X. When M = X, and Cent(B) # 0 for
every non-empty bounded subset B of X, i.e. X has the relative Chebyshev centre
property in X, we say that X admits Chebyshev centres. Since B = {f} is bounded,
any set M which has the relative Chebyshev centre property in X is proximinal
in X.

A mapping P: A —» X, where A is a non-empty subset of X, is said to be non-
expansive if d(Px, Py) < d(z,y) for all z,y € A. If K C A is such that P(K) C K
then K is said to be P-invariant or invariant under P.

The study of Chebyshev centres, initiated by Garkavi has attracted much at-
tention. Question concerning their existence and uniqueness have been analyzed by
many researchers. The following result on the existence and uniqueness of Cheby-
shev centres was proved in [9].

THEOREM 6. If X is a reflexive strictly convex Banach space then every convex
remotal set A in X has a unique Chebyshev centre.

This theorem can be formulated somewhat stronger as under.

THEOREM 7. Let X be a strictly convex dual Banach space then every convex
remotal set A in X has a unique centre.

Proof. Since A is remotal, it is bounded, i.e. ||y|| < m for all y € A and for
some m. Let B(0,m) be a ball in X with centre 0 and radius m. Then

inf —y|| = inf —9ll.
wléle,‘éﬂ”x yll ;relelelgllw yll

Since X is a dual Banach space, B(0,m) is w*-compact and so g: X — R de-
fined by g(x) = sup,c ||z — yl| is weakly lower semi-continuous and therefore it
attains its infimum at some zg, i.e. g(zo) = infzex g(z), i-e. sup,cq llvo — yll =
infyex sup,e 4 ||z —yl|- This proves the existence. The uniqueness part is the same
as given in [9]. m

NoTE 1. The existence part also follows from Garkavi’s theorem: Every dual
Banach space admits Chebyshev centres to bounded sets.

2. It will be interesting to study the existence and uniqueness of Chebyshev
centres in metric spaces.
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The following result deals with the invariance of the set Cents(B) under a
non-expansive mapping.

THEOREM 8. Let (X,d) be a metric space, P: X — X be a non-expansive
mapping and B a non-empty bounded subset of X such that B C P(B). If M is a
P-invariant non-empty subset of X then Cent s (B) is P-invariant.

In normed linear spaces this result was proved by J. B. Prolla [11] (Proposi-
tion 1) and the proof given in [11] can easily be extended to metric spaces.

The following result gives conditions under which subsets of a metric space
admitting centres also admit centres.

THEOREM 9. If a metric space (X, d) admits centres and M C X is the range
of an idempotent non-expansive mapping p: X — X, then M admits centres.

This result was proved by Prolla [11] in normed linear spaces (Proposition 2)
and that proof can be easily extended to metric spaces.

Now suppose (X,d) is an ultrametric space, i.e. metric space in which strong
triangle inequality d(z,y) < max{d(z, z),d(z,y)} is satisfied for all z,y,z € X. An
ultrametric space (X,d) is said to be spherically complete if every nest of closed
spheres has a non-empty intersection. The following theorem deals with Chebyshev
centre property in ultrametric spaces.

THEOREM 10. Ewvery spherically complete subspace of an ultrametric space has
the Chebyshev centre property.

In non-archimedian normed linear spaces, this theorem was proved by Prolla
[12] and the same proof can easily be extended to ultrametric spaces.

COROLLARY 1. Every spherically complete ultrametric space admits Chebyshev
centres.

COROLLARY 2. Every spherically complete subspace of an ultrametric space is
proziminal.

REMARKS 1. Uniqueness of elements of b.s.a. is also guaranteed if the func-
tional ¢ defined in Lemma 1 attains its infimum at exactly one k* € K.

2. When F'is a singleton, say {f}, then 6(F, K) = infrek d(f, k) = dist(f, K).
So the problem of b.s.a. (relative Chebyshev centres) reduces to the problem of
best approximation and consequently, results proved in this paper extends known
results on best approximation.

3. When K is a singleton, say {k}, then D(F, K) = sup;cpd(f,k). So the
simultaneous furthest point problem reduces to the farthest point problem and
consequently, results proved in this paper extends known resulta on farthest points.

4. The proof of Theorem 9 (see [11], Proposition 2) uses the fact that the
range of an idempotent mapping is the set of its fixed points. So, it is natural to
ask when the set of fixed points of a non-expansive mapping P: X — X admits
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Chebyshev centres assuming that X admits Chebyshev centres. Prolla [11] gave a
solution to this problem when X is an (AL)-space. This problem in metric spaces
is yet to be discussed.

5. It will be interesting to study elements of e-b.s.a. to F in K (e-simultaneous

furthest points to K in F) for any given € > 0, i.e. elements k* € K satisfying
sup,ep d(y,k*) < 8(F,K) + ¢ (i.e. elements f* € F satisfying infyer d(f*, k) >
D(F,k) —e¢).
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