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A CLASS OF GROWTH AND BOUNDS OF
SOLUTIONS OF A DIFFERENTIAL EQUATION

Julka Knezevié-Miljanovié

Abstract. We consider a class of nonlinear equations which admit characteristic equations.
If the roots of this algebraic equation are real and distinct, the growth and bounds of solutions
of the differential equation exist. An example is given which illustrates mentioned problems. An
example of equation that is similar illustrates the problem of the existence of unique solutions.

THEOREM. Consider the n-th order differential equation

Y™ + a1 @)y + -+ a(y(@)y' + aoy(@))y =0 (1)

where a;(y(xz)), 0 < i < n—1, are continuous functions. Let \;(y(x)), 1 < i< n,
be the roots of the equation A" + an_1(y(z))A" ™! +--- + ag(y(x)) = 0 and suppose
that the functions \;(y(x)) are real valued and that there exist 2n constants a; <
Br<as < fP2< - <ap< Bn such that

a; < Ai(y(z)) < Bi (2)

for (z,y) € [0,w) x [0,00). Then (1) has n linearly independent solutions y;(x),
-, Yn(x) such that

!
yi(z) >0, aisﬂéﬂi, 1<i<n, 0<s<w. (3)
vi(z)
If, additionally, (2) holds, then for each solution y(z) of (1) there exist n solutions
y1(x), --. , yn(x) which satisfy (3) and n constants Cy, ... , Cy, such that
y(@) = Ciya (@) + -+ Cuyn(z), 0Kz LW (4)

Proof. We recall a result of Hartman [1] which was for the first time proved in
case n = 2 by Olech [3]. This result, together with (2), permits us to say that for
each continuous function v from [0,w) to [0, 00) the equation

¥+ an 1 (0(@)y " + -+ ag(v(z))y = 0 (5%)
has n linearly independent solutions y?(z), 1 < ¢ < n, 2 € [0,w), which satisfy (3).
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Let Y be the space of continuous functions from [0, w) into R with the compact-
open topology (i.e. Y, — y means sup,c s |[ym(z) — y(z)| — 0, for each compact
J C[0,w)). For 1 <i< nlet

Si={yeY :y(0)=1,e%" <y(z) <’ 0<z<w}.
Each S; is a closed, convex subset of Y. Fix i and let S; = S. For v € S let
Tv={y €S :y is a solution of (5¥) which satisfies (3) for 0 < z < w}.

Then Twv is a non-empty, convex, compact subset of S. Hartman’s theorem [1]
shows that T'v is non-empty.

We shall apply the following fixed-point theorem [4]: Let S be a closed, convex,
non-empty subset of a Banach space and let T satisfies: 1) for each v € S, Tw is
a compact, convex, non-empty subset of S; 2) if v,,, € S, v, = vo € S and
Ym € T(vm), Ym — Yo, then yo € T(vg); 3) T'S is contained in a compact subset
of S. Then there is a v € S such that v € Tv. We need to verify 2) and 3).

2) Let J be a non-empty, compact subset of [0,w). Since J C [0,] for some
v > 0, we may assume that J = [0,7]. Since vy, € S, ym € S, {ai(ym(z)) :
0<i<n—1}, {vm(z)} and {ym(z)} are uniformly bounded on J. It follows that
{ym(@),. .y (@)} and {yi (@) = — T3Zg ak(vm(@)yim (2)} are uniformly
bounded on J. By the Ascoli’s theorem there is a subsequence {k} of {m} such
that (yk(x),yz(x),...,y,(cn_l) (z)) = (yo(x),21(x),...,2n—1(x)) uniformly on J as
k — oo. Putting {yx(z),... ,y,(cn_l)(x)} and {vy(z)} into (5%) we see that {y,(cn) (z)}
also converges to {z,(z)}, and that yo(z) is a solution of (5%°). Also, yo(z) satis-
fies (3).

3) It can be easily seen that T'S C S is compact in X. If {y,} is a sequence in
TS and J C [0,w) is compact, then {y,, } is uniformly bounded on J and, using (3),
{y,,} is uniformly bounded on J. An application of Ascoli’s theorem then shows
that TS is compact.

Thus, the first part of the theorem is proved.

Suppose that g(z) is a solution of (1) and let (v,d) C [0,w) be its maximal
interval of existence. Consider the linear differential equation

y™ + ap1 (F(@)y " + -+ ao(F(@))y = 0. (6)

From (2) and Hartman’s theorem we have n functions y1, ... , ¥,(x) which satisfy
(3) on (v,6) and which form a basis for the solution space of (6). Thus, for v <
x <4, g(xz) = Cry1(x) + - - - + Cryn(x), where C1, ..., C, are constants.

By standard arguments for prolonging solutions it follows that (vy,d) = [0, w)
and hence (4) follows. m
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ExaAMPLE. Given the equation
y" =2(6 + a(z,y))y’ + (20 + karctgy)y = 0, (7)

where a(z,y) is continuous and satisfies |a(z,y)| < 1, (z,y) € [0,w) x R, for these
values of the constant k, are we assured that solutions decay exponentially to zero?
Physically, this equation may represent the motion of a nonlinear spring immersed
in a liquid. The damping cannot be precisely measured, yet we want to be sure
that the motion dies out.

One can verify that if 0 < k¥ < 6/7, then the theorem may be applied with

a1=—7—\/29+k7r/2, B1:—5—\/5—k7r/2,
ag = =74+ +/5—kn/2, B2 ==5+/29+kn/2 <0.

ExaMPLE. A standard method of solving the second order differential equation
of the type
d? dy(0)

I =0, O =0, TZ=0 ®

is to multiply the equation by dy/dz. Then it can be written in the form

1d (dy\ dy
si: (@) Hwi =0

This last equation can be integrated to obtain

(d_y) +F(y) =Ci+F(C1),  y(0)=Cy, ©)

dz
where dF(y)/dx = 2f(y). In this fashion, the second order equation (8) has been
reduced to a first order equation (9). Presumably, once (9) has been solved, (8)
has also been solved.

But it can happen that (8) is of a type which has the unique solution, whereas
(9) does not. For example, the problem
d?y dy
— =0 0)=0, —(0)=1 10
Lry=0, =0, L0 (10)
can be reduced to (dy/dz)? + y? =1, y(0) = 0. One can easily check that each of
the following is an acceptable solution of the last equation:

yp =sinz, 0 <z < 00, sinz, 0<z <72,
_ { sinz, 0<z<7/2, yz3 =1 1, m/2<z<T,
b2 = 1, /2 <z < 00, cos(zx —T), T<xz<oo.

Only y;, however, also satisfies (10). The reason for the multiplicity of solutions is
related to the fact that whenever y? = 1, neither value of dy/dx from the reduced
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equation satisfies the Lipshitz condition. The question therefore rises, which ad-
ditional conditions must be imposed to the reduced equation in order to be sure
that selected solution also satisfies (10). We must select a solution of the reduced
equation which is at least twice differentiable everywhere. The solution y; of the
equation (10) and its reduced equation is evidently distinguished from the other
solutions by this requirement. Actually, all solutions of (10) must be analytic.

This problem has much physical interest since in (9), (dy/dz)? can be con-
sidered as a kinetic energy term and F(y) as a potential energy, so that (9) is a
mathematical statement of the law of conservation of energy. (8) is the correspond-
ing force equation.
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